{"title":"Bioavailability Enhancement of BCS Class II Raloxifene Hydrochloride by Inclusion Complex and Solid Dispersion Techniques.","authors":"Jimishaben D Kher, Kishorkumar Sorathia","doi":"10.62958/j.cjap.2024.002","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Raloxifene hydrochloride (RLX) is used extensively in the treatment of osteoporosis, only 2% of RLX's bioavailability remains after a significant first pass metabolism. Besides coming from BCS class II, RLX is not very soluble in water. Thus, the goal of the current study was to improve RLX solubility by creating an inclusion complex using β cyclodextrin (β-CD) as a carrier and solid dispersion with Poloxamer 407.</p><p><strong>Methods: </strong>Inclusion complex and solid dispersion were made using a variety of techniques, including kneading, co-precipitation, and physical mixing and solid dispersion using different drug to carrier ratios (1:1, 1:2 and 1:3).</p><p><strong>Results: </strong>Inclusion complex made using the co-precipitation method had shown 9-fold improvements in water solubility when compared with plain RLX. In order to assess the optimized complex's compatibility, thermal analysis, and crystallinity, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy were used. The XRD and DSC study's results indicated that RLX changed from a crystalline to an amorphous state. IC-6 exhibits effective water solubility based on the outcome. However, upon comparison of the two techniques, the β-CD complexation method shown an impressive rise in drug solubility when compared to solid dispersion.</p>","PeriodicalId":23985,"journal":{"name":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","volume":"40 ","pages":"e20240002"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62958/j.cjap.2024.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Raloxifene hydrochloride (RLX) is used extensively in the treatment of osteoporosis, only 2% of RLX's bioavailability remains after a significant first pass metabolism. Besides coming from BCS class II, RLX is not very soluble in water. Thus, the goal of the current study was to improve RLX solubility by creating an inclusion complex using β cyclodextrin (β-CD) as a carrier and solid dispersion with Poloxamer 407.
Methods: Inclusion complex and solid dispersion were made using a variety of techniques, including kneading, co-precipitation, and physical mixing and solid dispersion using different drug to carrier ratios (1:1, 1:2 and 1:3).
Results: Inclusion complex made using the co-precipitation method had shown 9-fold improvements in water solubility when compared with plain RLX. In order to assess the optimized complex's compatibility, thermal analysis, and crystallinity, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy were used. The XRD and DSC study's results indicated that RLX changed from a crystalline to an amorphous state. IC-6 exhibits effective water solubility based on the outcome. However, upon comparison of the two techniques, the β-CD complexation method shown an impressive rise in drug solubility when compared to solid dispersion.