Norman P A Hüner, Alexander G Ivanov, Beth Szyszka-Mroz, Leonid V Savitch, David R Smith, Victoria Kata
{"title":"Photostasis and photosynthetic adaptation to polar life.","authors":"Norman P A Hüner, Alexander G Ivanov, Beth Szyszka-Mroz, Leonid V Savitch, David R Smith, Victoria Kata","doi":"10.1007/s11120-024-01104-7","DOIUrl":null,"url":null,"abstract":"<p><p>Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01104-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.
期刊介绍:
Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.