L-valine is a powerful stimulator of GLP-1 secretion in rodents and stimulates secretion through ATP-sensitive potassium channels and voltage-gated calcium channels.

IF 4.6 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Ida Marie Modvig, Mark M Smits, Katrine Douglas Galsgaard, Anna Pii Hjørne, Anna Katarzyna Drzazga, Mette Marie Rosenkilde, Jens Juul Holst
{"title":"L-valine is a powerful stimulator of GLP-1 secretion in rodents and stimulates secretion through ATP-sensitive potassium channels and voltage-gated calcium channels.","authors":"Ida Marie Modvig, Mark M Smits, Katrine Douglas Galsgaard, Anna Pii Hjørne, Anna Katarzyna Drzazga, Mette Marie Rosenkilde, Jens Juul Holst","doi":"10.1038/s41387-024-00303-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown.</p><p><strong>Methods: </strong>We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon.</p><p><strong>Results: </strong>Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca<sup>2+</sup>-channels with nifedipine (10 μM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na<sup>+</sup> did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na<sup>+</sup> is not important for the depolarization necessary to activate the voltage-gated Ca<sup>2+</sup>-channels. Administration of the K<sub>ATP</sub>-channel opener diazoxide (250 μM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of K<sub>ATP</sub>-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon.</p><p><strong>Conclusions: </strong>L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of K<sub>ATP</sub>-channels and opening of voltage-gated Ca<sup>2+</sup>-channels are involved in L-valine induced GLP-1 secretion.</p>","PeriodicalId":19339,"journal":{"name":"Nutrition & Diabetes","volume":"14 1","pages":"43"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166632/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41387-024-00303-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: We previously reported that, among all the naturally occurring amino acids, L-valine is the most powerful luminal stimulator of glucagon-like peptide 1 (GLP-1) release from the upper part of the rat small intestine. This makes L-valine an interesting target for nutritional-based modulation of GLP-1 secretion. However, the molecular mechanism of L-valine-induced secretion remains unknown.

Methods: We aimed to investigate the effect of orally given L-valine in mice and to identify the molecular details of L-valine stimulated GLP-1 release using the isolated perfused rat small intestine and GLUTag cells. In addition, the effect of L-valine on hormone secretion from the distal intestine was investigated using a perfused rat colon.

Results: Orally given L-valine (1 g/kg) increased plasma levels of active GLP-1 comparably to orally given glucose (2 g/kg) in male mice, supporting that L-valine is a powerful stimulator of GLP-1 release in vivo (P > 0.05). Luminal L-valine (50 mM) strongly stimulated GLP-1 release from the perfused rat small intestine (P < 0.0001), and inhibition of voltage-gated Ca2+-channels with nifedipine (10 μM) inhibited the GLP-1 response (P < 0.01). Depletion of luminal Na+ did not affect L-valine-induced GLP-1 secretion (P > 0.05), suggesting that co-transport of L-valine and Na+ is not important for the depolarization necessary to activate the voltage-gated Ca2+-channels. Administration of the KATP-channel opener diazoxide (250 μM) completely blocked the L-valine induced GLP-1 response (P < 0.05), suggesting that L-valine induced depolarization arises from metabolism and opening of KATP-channels. Similar to the perfused rat small intestine, L-valine tended to stimulate peptide tyrosine-tyrosine (PYY) and GLP-1 release from the perfused rat colon.

Conclusions: L-valine is a powerful stimulator of GLP-1 release in rodents. We propose that intracellular metabolism of L-valine leading to closure of KATP-channels and opening of voltage-gated Ca2+-channels are involved in L-valine induced GLP-1 secretion.

Abstract Image

L -缬氨酸是啮齿动物 GLP-1 分泌的强大刺激物,可通过 ATP 敏感钾通道和电压门控钙通道刺激分泌。
背景:我们以前曾报道过,在所有天然氨基酸中,L-缬氨酸是大鼠小肠上部释放胰高血糖素样肽 1(GLP-1)的最强腔内刺激物。因此,L-缬氨酸是以营养为基础调节 GLP-1 分泌的一个有趣靶点。然而,L-缬氨酸诱导分泌的分子机制仍然未知:我们的目的是研究口服 L-缬氨酸对小鼠的影响,并利用离体灌流大鼠小肠和 GLUTag 细胞确定 L-缬氨酸刺激 GLP-1 释放的分子细节。此外,还利用灌流大鼠结肠研究了左旋缬氨酸对远端肠道激素分泌的影响:结果:口服 L-缬氨酸(1 克/千克)可提高雄性小鼠血浆中活性 GLP-1 的水平,与口服葡萄糖(2 克/千克)的效果相当,这证明 L-缬氨酸对体内 GLP-1 的释放具有强大的刺激作用(P > 0.05)。腔内 L-缬氨酸(50 mM)强烈刺激灌流大鼠小肠释放 GLP-1(硝苯地平(10 μM)可抑制 GLP-1 反应(P + 不影响 L-缬氨酸诱导的 GLP-1 分泌(P > 0.05)),这表明 L-缬氨酸和 Na+ 的共同转运对于激活电压门控 Ca2+ 通道所需的去极化并不重要。给予 KATP 通道开放剂二氮唑(250 μM)可完全阻断 L-缬氨酸诱导的 GLP-1 反应(P ATP 通道)。与灌流大鼠小肠类似,L-缬氨酸也倾向于刺激灌流大鼠结肠中肽类酪氨酸-酪氨酸(PYY)和 GLP-1 的释放:结论:L-缬氨酸是啮齿动物释放 GLP-1 的强大刺激物。我们认为,L-缬氨酸的细胞内代谢导致 KATP 通道关闭和电压门控 Ca2+ 通道开放参与了 L-缬氨酸诱导 GLP-1 的分泌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nutrition & Diabetes
Nutrition & Diabetes ENDOCRINOLOGY & METABOLISM-NUTRITION & DIETETICS
CiteScore
9.20
自引率
0.00%
发文量
50
审稿时长
>12 weeks
期刊介绍: Nutrition & Diabetes is a peer-reviewed, online, open access journal bringing to the fore outstanding research in the areas of nutrition and chronic disease, including diabetes, from the molecular to the population level.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信