Vidhyadhar Nandana, Nadra Al-Husini, Arti Vaishnav, Kulathungage H Dilrangi, Jared M Schrader
{"title":"<i>Caulobacter crescentus</i> RNase E condensation contributes to autoregulation and fitness.","authors":"Vidhyadhar Nandana, Nadra Al-Husini, Arti Vaishnav, Kulathungage H Dilrangi, Jared M Schrader","doi":"10.1091/mbc.E23-12-0493","DOIUrl":null,"url":null,"abstract":"<p><p>RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from <i>Escherichia coli</i> and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium <i>Caulobacter crescentus</i> RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar104"},"PeriodicalIF":3.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321048/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E23-12-0493","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
RNase E is the most common RNA decay nuclease in bacteria, setting the global mRNA decay rate and scaffolding formation of the RNA degradosome complex and BR-bodies. To properly set the global mRNA decay rate, RNase E from Escherichia coli and neighboring γ-proteobacteria were found to autoregulate RNase E levels via the decay of its mRNA's 5' untranslated region (UTR). While the 5' UTR is absent from other groups of bacteria in the Rfam database, we identified that the α-proteobacterium Caulobacter crescentus RNase E contains a similar 5' UTR structure that promotes RNase E autoregulation. In both bacteria, the C-terminal intrinsically disordered region (IDR) of RNase E is required for proper autoregulation to occur, and this IDR is also necessary and sufficient for RNase E to phase-separate, generating BR-bodies. Using in vitro purified RNase E, we find that the IDR's ability to promote phase separation correlates with enhanced 5' UTR cleavage, suggesting that phase separation of RNase E with the 5' UTR enhances autoregulation. Finally, using growth competition experiments, we find that a strain capable of autoregulation rapidly outcompetes a strain with a 5' UTR mutation that cannot autoregulate, suggesting autoregulation promotes optimal cellular fitness.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.