Octopamine in the mushroom body circuitry for learning and memory.

IF 1.8 4区 医学 Q4 NEUROSCIENCES
Learning & memory Pub Date : 2024-06-11 Print Date: 2024-05-01 DOI:10.1101/lm.053839.123
Mareike Selcho
{"title":"Octopamine in the mushroom body circuitry for learning and memory.","authors":"Mareike Selcho","doi":"10.1101/lm.053839.123","DOIUrl":null,"url":null,"abstract":"<p><p>Octopamine, the functional analog of noradrenaline, modulates many different behaviors and physiological processes in invertebrates. In the central nervous system, a few octopaminergic neurons project throughout the brain and innervate almost all neuropils. The center of memory formation in insects, the mushroom bodies, receive octopaminergic innervations in all insects investigated so far. Different octopamine receptors, either increasing or decreasing cAMP or calcium levels in the cell, are localized in Kenyon cells, further supporting the release of octopamine in the mushroom bodies. In addition, different mushroom body (MB) output neurons, projection neurons, and dopaminergic PAM cells are targets of octopaminergic neurons, enabling the modulation of learning circuits at different neural sites. For some years, the theory persisted that octopamine mediates rewarding stimuli, whereas dopamine (DA) represents aversive stimuli. This simple picture has been challenged by the finding that DA is required for both appetitive and aversive learning. Furthermore, octopamine is also involved in aversive learning and a rather complex interaction between these biogenic amines seems to modulate learning and memory. This review summarizes the role of octopamine in MB function, focusing on the anatomical principles and the role of the biogenic amine in learning and memory.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053839.123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Octopamine, the functional analog of noradrenaline, modulates many different behaviors and physiological processes in invertebrates. In the central nervous system, a few octopaminergic neurons project throughout the brain and innervate almost all neuropils. The center of memory formation in insects, the mushroom bodies, receive octopaminergic innervations in all insects investigated so far. Different octopamine receptors, either increasing or decreasing cAMP or calcium levels in the cell, are localized in Kenyon cells, further supporting the release of octopamine in the mushroom bodies. In addition, different mushroom body (MB) output neurons, projection neurons, and dopaminergic PAM cells are targets of octopaminergic neurons, enabling the modulation of learning circuits at different neural sites. For some years, the theory persisted that octopamine mediates rewarding stimuli, whereas dopamine (DA) represents aversive stimuli. This simple picture has been challenged by the finding that DA is required for both appetitive and aversive learning. Furthermore, octopamine is also involved in aversive learning and a rather complex interaction between these biogenic amines seems to modulate learning and memory. This review summarizes the role of octopamine in MB function, focusing on the anatomical principles and the role of the biogenic amine in learning and memory.

蘑菇体内学习和记忆回路中的奥克多巴胺
多巴胺是去甲肾上腺素的功能类似物,可调节无脊椎动物的许多不同行为和生理过程。在中枢神经系统中,少数八巴胺能神经元投射到整个大脑,并支配几乎所有的神经细胞。昆虫记忆形成的中心--蘑菇体,在迄今调查的所有昆虫中都接受过八巴胺能神经元的支配。肯尼恩细胞中存在不同的八巴胺受体,它们可以增加或减少细胞中的 cAMP 或钙水平,这进一步支持了蘑菇体内八巴胺的释放。此外,不同的蘑菇体(MB)输出神经元、投射神经元和多巴胺能 PAM 细胞都是八巴胺能神经元的靶点,从而实现了对不同神经部位学习回路的调节。多年来,一直有一种理论认为,章胺介导奖赏刺激,而多巴胺(DA)则代表厌恶刺激。这种简单的看法受到了挑战,因为人们发现食欲学习和厌恶学习都需要多巴胺。此外,章胺也参与了厌恶性学习,这些生物胺之间相当复杂的相互作用似乎调节着学习和记忆。本综述总结了章胺在甲基溴功能中的作用,重点是生物胺在学习和记忆中的解剖学原理和作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Learning & memory
Learning & memory 医学-神经科学
CiteScore
3.60
自引率
5.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信