Drosophila learning and memory centers and the actions of drugs of abuse.

IF 1.8 4区 医学 Q4 NEUROSCIENCES
Learning & memory Pub Date : 2024-06-11 Print Date: 2024-05-01 DOI:10.1101/lm.053815.123
Caleb Larnerd, Neha Kachewar, Fred W Wolf
{"title":"<i>Drosophila</i> learning and memory centers and the actions of drugs of abuse.","authors":"Caleb Larnerd, Neha Kachewar, Fred W Wolf","doi":"10.1101/lm.053815.123","DOIUrl":null,"url":null,"abstract":"<p><p>Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in <i>Drosophila melanogaster</i> are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. <i>Drosophila</i> is a premier organism for identifying the mechanisms of learning and memory. <i>Drosophila</i> also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.</p>","PeriodicalId":18003,"journal":{"name":"Learning & memory","volume":"31 5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning & memory","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1101/lm.053815.123","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Print","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.

果蝇的学习和记忆中枢以及滥用药物的作用。
吸毒成瘾与学习和记忆回路密切相关。滥用药物会产生强烈、不恰当和持久的记忆,这也是造成其许多破坏性特性的原因,例如不顾不良后果继续使用以及极高的复发率。对黑腹果蝇的研究有助于我们了解滥用药物(尤其是酒精)是如何在单个神经元水平和神经回路中产生记忆的。果蝇是确定学习和记忆机制的主要生物。果蝇对滥用药物的反应方式与人类和啮齿类动物模型极为相似。一个正在形成的共识是,对于酒精,蘑菇体参与控制急性药物敏感性的回路,而不是明确的联想可塑性形式(如耐受性),以及对其奖赏和厌恶特性的经典联想记忆。此外,越来越清楚的是,滥用药物使用蘑菇体回路的方式与其他行为不同,这可能为其成瘾特性提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Learning & memory
Learning & memory 医学-神经科学
CiteScore
3.60
自引率
5.00%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The neurobiology of learning and memory is entering a new interdisciplinary era. Advances in neuropsychology have identified regions of brain tissue that are critical for certain types of function. Electrophysiological techniques have revealed behavioral correlates of neuronal activity. Studies of synaptic plasticity suggest that some mechanisms of memory formation may resemble those of neural development. And molecular approaches have identified genes with patterns of expression that influence behavior. It is clear that future progress depends on interdisciplinary investigations. The current literature of learning and memory is large but fragmented. Until now, there has been no single journal devoted to this area of study and no dominant journal that demands attention by serious workers in the area, regardless of specialty. Learning & Memory provides a forum for these investigations in the form of research papers and review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信