Watermelon: setup and validation of an in silico fragment-based approach.

IF 5.6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Miriana Di Stefano, Salvatore Galati, Lisa Piazza, Francesca Gado, Carlotta Granchi, Marco Macchia, Antonio Giordano, Tiziano Tuccinardi, Giulio Poli
{"title":"Watermelon: setup and validation of an <i>in silico</i> fragment-based approach.","authors":"Miriana Di Stefano, Salvatore Galati, Lisa Piazza, Francesca Gado, Carlotta Granchi, Marco Macchia, Antonio Giordano, Tiziano Tuccinardi, Giulio Poli","doi":"10.1080/14756366.2024.2356179","DOIUrl":null,"url":null,"abstract":"<p><p>We present a new computational approach, named <i>Watermelon</i>, designed for the development of pharmacophore models based on receptor structures. The methodology involves the sampling of potential hotspots for ligand interactions within a protein target's binding site, utilising molecular fragments as probes. By employing docking and molecular dynamics (MD) simulations, the most significant interactions formed by these probes within distinct regions of the binding site are identified. These interactions are subsequently transformed into pharmacophore features that delineates key anchoring sites for potential ligands. The reliability of the approach was experimentally validated using the monoacylglycerol lipase (MAGL) enzyme. The generated pharmacophore model captured features representing ligand-MAGL interactions observed in various X-ray co-crystal structures and was employed to screen a database of commercially available compounds, in combination with consensus docking and MD simulations. The screening successfully identified two new MAGL inhibitors with micromolar potency, thus confirming the reliability of the <i>Watermelon</i> approach.</p>","PeriodicalId":15769,"journal":{"name":"Journal of Enzyme Inhibition and Medicinal Chemistry","volume":"39 1","pages":"2356179"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232643/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Enzyme Inhibition and Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14756366.2024.2356179","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new computational approach, named Watermelon, designed for the development of pharmacophore models based on receptor structures. The methodology involves the sampling of potential hotspots for ligand interactions within a protein target's binding site, utilising molecular fragments as probes. By employing docking and molecular dynamics (MD) simulations, the most significant interactions formed by these probes within distinct regions of the binding site are identified. These interactions are subsequently transformed into pharmacophore features that delineates key anchoring sites for potential ligands. The reliability of the approach was experimentally validated using the monoacylglycerol lipase (MAGL) enzyme. The generated pharmacophore model captured features representing ligand-MAGL interactions observed in various X-ray co-crystal structures and was employed to screen a database of commercially available compounds, in combination with consensus docking and MD simulations. The screening successfully identified two new MAGL inhibitors with micromolar potency, thus confirming the reliability of the Watermelon approach.

西瓜:基于片段的硅学方法的设置和验证。
我们介绍了一种名为 "西瓜"(Watermelon)的新计算方法,该方法专为开发基于受体结构的药效模型而设计。该方法利用分子片段作为探针,对蛋白质靶点结合位点内配体相互作用的潜在热点进行采样。通过采用对接和分子动力学(MD)模拟,确定这些探针在结合位点不同区域内形成的最重要的相互作用。这些相互作用随后被转化为药理特征,为潜在配体划定关键锚定位点。该方法的可靠性通过单酰基甘油脂肪酶(MAGL)酶进行了实验验证。生成的药理模型捕捉了在各种 X 射线共晶体结构中观察到的配体-MAGL 相互作用特征,并结合共识对接和 MD 模拟,用于筛选市售化合物数据库。这次筛选成功鉴定了两种具有微摩尔效力的新型 MAGL 抑制剂,从而证实了西瓜方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
10.70%
发文量
195
审稿时长
4-8 weeks
期刊介绍: Journal of Enzyme Inhibition and Medicinal Chemistry publishes open access research on enzyme inhibitors, inhibitory processes, and agonist/antagonist receptor interactions in the development of medicinal and anti-cancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry aims to provide an international and interdisciplinary platform for the latest findings in enzyme inhibition research. The journal’s focus includes current developments in: Enzymology; Cell biology; Chemical biology; Microbiology; Physiology; Pharmacology leading to drug design; Molecular recognition processes; Distribution and metabolism of biologically active compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信