Impact of device resistances in the performance of graphene-based terahertz photodetectors.

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
O Castelló, Sofía M López Baptista, K Watanabe, T Taniguchi, E Diez, J E Velázquez-Pérez, Y M Meziani, J M Caridad, J A Delgado-Notario
{"title":"Impact of device resistances in the performance of graphene-based terahertz photodetectors.","authors":"O Castelló, Sofía M López Baptista, K Watanabe, T Taniguchi, E Diez, J E Velázquez-Pérez, Y M Meziani, J M Caridad, J A Delgado-Notario","doi":"10.1007/s12200-024-00122-6","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, graphene field-effect-transistors (GFETs) have demonstrated an outstanding potential for terahertz (THz) photodetection due to their fast response and high-sensitivity. Such features are essential to enable emerging THz applications, including 6G wireless communications, quantum information, bioimaging and security. However, the overall performance of these photodetectors may be utterly compromised by the impact of internal resistances presented in the device, so-called access or parasitic resistances. In this work, we provide a detailed study of the influence of internal device resistances in the photoresponse of high-mobility dual-gate GFET detectors. Such dual-gate architectures allow us to fine tune (decrease) the internal resistance of the device by an order of magnitude and consequently demonstrate an improved responsivity and noise-equivalent-power values of the photodetector, respectively. Our results can be well understood by a series resistance model, as shown by the excellent agreement found between the experimental data and theoretical calculations. These findings are therefore relevant to understand and improve the overall performance of existing high-mobility graphene photodetectors.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"17 1","pages":"19"},"PeriodicalIF":4.1000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-024-00122-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, graphene field-effect-transistors (GFETs) have demonstrated an outstanding potential for terahertz (THz) photodetection due to their fast response and high-sensitivity. Such features are essential to enable emerging THz applications, including 6G wireless communications, quantum information, bioimaging and security. However, the overall performance of these photodetectors may be utterly compromised by the impact of internal resistances presented in the device, so-called access or parasitic resistances. In this work, we provide a detailed study of the influence of internal device resistances in the photoresponse of high-mobility dual-gate GFET detectors. Such dual-gate architectures allow us to fine tune (decrease) the internal resistance of the device by an order of magnitude and consequently demonstrate an improved responsivity and noise-equivalent-power values of the photodetector, respectively. Our results can be well understood by a series resistance model, as shown by the excellent agreement found between the experimental data and theoretical calculations. These findings are therefore relevant to understand and improve the overall performance of existing high-mobility graphene photodetectors.

器件电阻对石墨烯基太赫兹光电探测器性能的影响。
近年来,石墨烯场效应晶体管(GFET)凭借其快速响应和高灵敏度,在太赫兹(THz)光电探测领域展现出了巨大潜力。这些特性对于实现新兴太赫兹应用(包括 6G 无线通信、量子信息、生物成像和安全)至关重要。然而,这些光电探测器的整体性能可能会因器件内部电阻(即所谓的接入电阻或寄生电阻)的影响而大打折扣。在这项工作中,我们详细研究了器件内部电阻对高移动性双栅 GFET 探测器光响应的影响。这种双栅极结构使我们能够将器件内阻微调(降低)一个数量级,从而证明光电探测器的响应度和噪声等效功率值分别得到了改善。实验数据与理论计算之间的出色一致性表明,我们的结果可以通过串联电阻模型很好地理解。因此,这些发现对于理解和提高现有高迁移率石墨烯光电探测器的整体性能具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信