{"title":"Exposure assessment and cytogenetic biomonitoring study of workers occupationally exposed to extremely low-frequency magnetic fields","authors":"Ha Nguyen PhD, Giovani Vandewalle MD, Birgit Mertens PhD, Jean-Francois Collard PhD, Maurice Hinsenkamp MD, PhD, Luc Verschaeve PhD, Veronique Feipel PhD, Isabelle Magne PhD, Martine Souques PhD, Véronique Beauvois IR, Maryse Ledent MPE","doi":"10.1002/bem.22506","DOIUrl":null,"url":null,"abstract":"<p>Human cytogenetic biomonitoring (HCB) has long been used to evaluate the potential effects of work environments on the DNA integrity of workers. However, HCB studies on the genotoxic effects of occupational exposure to extremely low-frequency electromagnetic fields (ELF-MFs) were limited by the quality of the exposure assessment. More specifically, concerns were raised regarding the method of exposure assessment, the selection of exposure metrics, and the definition of exposure group. In this study, genotoxic effects of occupational exposure to ELF-MFs were assessed on peripheral blood lymphocytes of 88 workers from the electrical sector using the comet and cytokinesis-block micronucleus assay, considering workers' actual exposure over three consecutive days. Different methods were applied to define exposure groups. Overall, the summarized ELF-MF data indicated a low exposure level in the whole study population. It also showed that relying solely on job titles might misclassify 12 workers into exposure groups. We proposed combining hierarchical agglomerative clustering on personal exposure data and job titles to define exposure groups. The final results showed that occupational MF exposure did not significantly induce more genetic damage. Other factors such as age or past smoking rather than ELF-MF exposure could affect the cytogenetic test outcomes.</p>","PeriodicalId":8956,"journal":{"name":"Bioelectromagnetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bem.22506","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectromagnetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bem.22506","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human cytogenetic biomonitoring (HCB) has long been used to evaluate the potential effects of work environments on the DNA integrity of workers. However, HCB studies on the genotoxic effects of occupational exposure to extremely low-frequency electromagnetic fields (ELF-MFs) were limited by the quality of the exposure assessment. More specifically, concerns were raised regarding the method of exposure assessment, the selection of exposure metrics, and the definition of exposure group. In this study, genotoxic effects of occupational exposure to ELF-MFs were assessed on peripheral blood lymphocytes of 88 workers from the electrical sector using the comet and cytokinesis-block micronucleus assay, considering workers' actual exposure over three consecutive days. Different methods were applied to define exposure groups. Overall, the summarized ELF-MF data indicated a low exposure level in the whole study population. It also showed that relying solely on job titles might misclassify 12 workers into exposure groups. We proposed combining hierarchical agglomerative clustering on personal exposure data and job titles to define exposure groups. The final results showed that occupational MF exposure did not significantly induce more genetic damage. Other factors such as age or past smoking rather than ELF-MF exposure could affect the cytogenetic test outcomes.
期刊介绍:
Bioelectromagnetics is published by Wiley-Liss, Inc., for the Bioelectromagnetics Society and is the official journal of the Bioelectromagnetics Society and the European Bioelectromagnetics Association. It is a peer-reviewed, internationally circulated scientific journal that specializes in reporting original data on biological effects and applications of electromagnetic fields that range in frequency from zero hertz (static fields) to the terahertz undulations and visible light. Both experimental and clinical data are of interest to the journal''s readers as are theoretical papers or reviews that offer novel insights into or criticism of contemporary concepts and theories of field-body interactions. The Bioelectromagnetics Society, which sponsors the journal, also welcomes experimental or clinical papers on the domains of sonic and ultrasonic radiation.