Aliaa I Gaballah, Aliaa A Elsherbiny, Marwa Sharaky, Najat O Hamed, Nahed A Raslan, Abdullah Almilaibary, Reda Mohamed Abdrabbou Fayyad, Mona S Ousman, Ahmed M E Hamdan, Sally A Fahim
{"title":"Dexamethasone-tamoxifen combination exerts synergistic therapeutic effects in tamoxifen-resistance breast cancer cells.","authors":"Aliaa I Gaballah, Aliaa A Elsherbiny, Marwa Sharaky, Najat O Hamed, Nahed A Raslan, Abdullah Almilaibary, Reda Mohamed Abdrabbou Fayyad, Mona S Ousman, Ahmed M E Hamdan, Sally A Fahim","doi":"10.1042/BSR20240367","DOIUrl":null,"url":null,"abstract":"<p><p>Tamoxifen (TAM) is a key player in estrogen receptor-positive (ER+) breast cancer (BC); however, ∼30% of patients experience relapse and a lower survival rate due to TAM resistance. TAM resistance was related to the over expression of SOX-2 gene, which is regulated by the E2F3 transcription factor in the Wnt signaling pathway. It was suggested that SOX-2 overexpression was suppressed by dexamethasone (DEX), a glucocorticoid commonly prescribed to BC patients. The aim of the present study is to explore the effect of combining DEX and TAM on the inhibition of TAM-resistant LCC-2 cells (TAMR-1) through modulating the E2F3/SOX-2-mediated Wnt signaling pathway. The effect of the combination therapy on MCF-7 and TAMR-1 cell viability was assessed. Drug interactions were analyzed using CompuSyn and SynergyFinder softwares. Cell cycle distribution, apoptotic protein expression, gene expression levels of SOX-2 and E2F3, and cell migration were also assessed. Combining DEX with TAM led to synergistic inhibition of TAMR-1 cell proliferation and migration, induced apoptosis, reduced SOX-2 and E2F3 expression and was also associated with S and G2-M phase arrest. Therefore, combining DEX with TAM may present an effective therapeutic option to overcome TAM resistance, by targeting the E2F3/SOX-2/Wnt signaling pathway, in addition to its anti-inflammatory effect.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11230869/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240367","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tamoxifen (TAM) is a key player in estrogen receptor-positive (ER+) breast cancer (BC); however, ∼30% of patients experience relapse and a lower survival rate due to TAM resistance. TAM resistance was related to the over expression of SOX-2 gene, which is regulated by the E2F3 transcription factor in the Wnt signaling pathway. It was suggested that SOX-2 overexpression was suppressed by dexamethasone (DEX), a glucocorticoid commonly prescribed to BC patients. The aim of the present study is to explore the effect of combining DEX and TAM on the inhibition of TAM-resistant LCC-2 cells (TAMR-1) through modulating the E2F3/SOX-2-mediated Wnt signaling pathway. The effect of the combination therapy on MCF-7 and TAMR-1 cell viability was assessed. Drug interactions were analyzed using CompuSyn and SynergyFinder softwares. Cell cycle distribution, apoptotic protein expression, gene expression levels of SOX-2 and E2F3, and cell migration were also assessed. Combining DEX with TAM led to synergistic inhibition of TAMR-1 cell proliferation and migration, induced apoptosis, reduced SOX-2 and E2F3 expression and was also associated with S and G2-M phase arrest. Therefore, combining DEX with TAM may present an effective therapeutic option to overcome TAM resistance, by targeting the E2F3/SOX-2/Wnt signaling pathway, in addition to its anti-inflammatory effect.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics