HPS6 Deficiency Leads to Reduced Vacuolar-Type H+-ATPase and Impaired Biogenesis of Lamellar Bodies in Alveolar Type II Cells.

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Zhenhua Hao, Huipeng Wang, Zixuan Zhou, Qingsong Yang, Beibei Zhang, Jing Ma, Wei Li
{"title":"HPS6 Deficiency Leads to Reduced Vacuolar-Type H<sup>+</sup>-ATPase and Impaired Biogenesis of Lamellar Bodies in Alveolar Type II Cells.","authors":"Zhenhua Hao, Huipeng Wang, Zixuan Zhou, Qingsong Yang, Beibei Zhang, Jing Ma, Wei Li","doi":"10.1165/rcmb.2022-0492OC","DOIUrl":null,"url":null,"abstract":"<p><p>Lamellar bodies (LBs) are tissue-specific lysosome-related organelles in type II alveolar cells that are the main site for the synthesis, storage, and secretion of pulmonary surfactants. Defects in pulmonary surfactants lead to a variety of respiratory and immune-related disorders. LB biogenesis is closely related to their function, but the underlying regulatory mechanism is largely unclear. Here, we found that deficiency of HPS6, a subunit of BLOC-2 (biogenesis of lysosome-related organelles complex-2), led to a reduction of the steady-state concentration of vacuolar-type H<sup>+</sup>-ATPase and an increase in the luminal pH of LBs. Furthermore, we observed increased LB size, accumulated surfactant proteins, and altered lipid profiling of lung tissue and BAL fluid due to HPS6 deficiency. These findings suggest that HPS6 regulates the distribution of vacuolar-type H<sup>+</sup>-ATPase on LBs to maintain its luminal acidity and LB homeostasis. This may provide new insights into the LB pathology.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2022-0492OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lamellar bodies (LBs) are tissue-specific lysosome-related organelles in type II alveolar cells that are the main site for the synthesis, storage, and secretion of pulmonary surfactants. Defects in pulmonary surfactants lead to a variety of respiratory and immune-related disorders. LB biogenesis is closely related to their function, but the underlying regulatory mechanism is largely unclear. Here, we found that deficiency of HPS6, a subunit of BLOC-2 (biogenesis of lysosome-related organelles complex-2), led to a reduction of the steady-state concentration of vacuolar-type H+-ATPase and an increase in the luminal pH of LBs. Furthermore, we observed increased LB size, accumulated surfactant proteins, and altered lipid profiling of lung tissue and BAL fluid due to HPS6 deficiency. These findings suggest that HPS6 regulates the distribution of vacuolar-type H+-ATPase on LBs to maintain its luminal acidity and LB homeostasis. This may provide new insights into the LB pathology.

缺乏 HPS6 会导致肺泡 II 型细胞中 V-ATP 酶减少和薄层体生物生成受损。
薄层体(LB)是 II 型肺泡细胞中一种组织特异性溶酶体相关细胞器,是合成、储存和分泌肺表面活性物质的主要场所。肺表面活性物质的缺陷会导致多种呼吸系统和免疫相关疾病。肺表面活性物质的生物发生与其功能密切相关,但其潜在的调控机制尚不清楚。在这里,我们发现,BLOC-2(溶酶体相关细胞器复合物-2的生物发生)的一个亚基HPS6缺乏会导致V-ATP酶的稳态水平降低和LB管腔pH值升高。此外,我们还观察到,由于缺乏 HPS6,肺组织和支气管肺泡灌洗液中的枸橼酸盐体积增大、表面活性蛋白积累以及脂质谱图发生了改变。这些发现表明,HPS6调节V-ATP酶在LB上的分布,以维持其管腔酸度和LB的稳态。这或许能为了解肺泡病理学提供新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信