Inner Doping of Carbon Nanotubes with Perovskites for Ultralow Power Transistors

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Maguang Zhu, Huimin Yin, Jiang Cao, Lin Xu, Peng Lu, Yang Liu, Li Ding, Chenwei Fan, Haiyang Liu, Yuanfang Zhang, Yizheng Jin, Lian-Mao Peng, Chuanhong Jin, Zhiyong Zhang
{"title":"Inner Doping of Carbon Nanotubes with Perovskites for Ultralow Power Transistors","authors":"Maguang Zhu,&nbsp;Huimin Yin,&nbsp;Jiang Cao,&nbsp;Lin Xu,&nbsp;Peng Lu,&nbsp;Yang Liu,&nbsp;Li Ding,&nbsp;Chenwei Fan,&nbsp;Haiyang Liu,&nbsp;Yuanfang Zhang,&nbsp;Yizheng Jin,&nbsp;Lian-Mao Peng,&nbsp;Chuanhong Jin,&nbsp;Zhiyong Zhang","doi":"10.1002/adma.202403743","DOIUrl":null,"url":null,"abstract":"<p>Semiconducting carbon nanotubes (CNTs) are considered as the most promising channel material to construct ultrascaled field-effect transistors, but the perfect sp<sup>2</sup> C─C structure makes stable doping difficult, which limits the electrical designability of CNT devices. Here, an inner doping method is developed by filling CNTs with 1D halide perovskites to form a coaxial heterojunction, which enables a stable n-type field-effect transistor for constructing complementary metal–oxide–semiconductor electronics. Most importantly, a quasi-broken-gap (BG) heterojunction tunnel field-effect transistor (TFET) is first demonstrated based on an individual partial-filling CsPbBr<sub>3</sub>/CNT and exhibits a subthreshold swing of 35 mV dec<sup>−1</sup> with a high on-state current of up to 4.9 µA per tube and an on/off current ratio of up to 10<sup>5</sup> at room temperature. The quasi-BG TFET based on the CsPbBr<sub>3</sub>/CNT coaxial heterojunction paves the way for constructing high-performance and ultralow power consumption integrated circuits.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"36 33","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202403743","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Semiconducting carbon nanotubes (CNTs) are considered as the most promising channel material to construct ultrascaled field-effect transistors, but the perfect sp2 C─C structure makes stable doping difficult, which limits the electrical designability of CNT devices. Here, an inner doping method is developed by filling CNTs with 1D halide perovskites to form a coaxial heterojunction, which enables a stable n-type field-effect transistor for constructing complementary metal–oxide–semiconductor electronics. Most importantly, a quasi-broken-gap (BG) heterojunction tunnel field-effect transistor (TFET) is first demonstrated based on an individual partial-filling CsPbBr3/CNT and exhibits a subthreshold swing of 35 mV dec−1 with a high on-state current of up to 4.9 µA per tube and an on/off current ratio of up to 105 at room temperature. The quasi-BG TFET based on the CsPbBr3/CNT coaxial heterojunction paves the way for constructing high-performance and ultralow power consumption integrated circuits.

在碳纳米管内部掺入过氧化物以实现超低功率晶体管。
半导体碳纳米管(CNT)一直被认为是最有希望构建超大规模场效应晶体管(FET)的通道材料,但完美的sp2 C-C 结构使得稳定掺杂变得困难,从而限制了 CNT 器件的电气可设计性。在此,我们开发了一种内部掺杂方法,通过在 CNT 中填充一维(1D)卤化物过氧化物来形成同轴异质结,从而实现稳定的 n 型场效应晶体管(CNT-FET),用于构建互补金属氧化物半导体(CMOS)电子器件。最重要的是,基于单个部分填充 CsPbBr3/CNT 的准断裂间隙(BG)异质结隧道场效应晶体管(TFET)首次得到了验证,并在室温下表现出 35 mV dec-1 的亚阈值摆幅、高达 4.9 μA/tube 的导通电流和高达 105 的导通/关断电流比。基于 CsPbBr3/CNT 同轴异质结的准 BG TFET 为构建高性能和超低功耗集成电路铺平了道路。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信