{"title":"Locally finite vertex-rotary maps and coset graphs with finite valency and finite edge multiplicity","authors":"Cai Heng Li , Cheryl E. Praeger , Shu Jiao Song","doi":"10.1016/j.jctb.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>A well-known theorem of Sabidussi shows that a simple <em>G</em>-arc-transitive graph can be represented as a coset graph for the group <em>G</em>. This pivotal result is the standard way to turn problems about simple arc-transitive graphs into questions about groups. In this paper, the Sabidussi representation is extended to arc-transitive, not necessarily simple graphs which satisfy a local-finiteness condition: namely graphs with finite valency and finite edge-multiplicity. The construction yields a <em>G</em>-arc-transitive coset graph <span><math><mrow><mi>Cos</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>,</mo><mi>J</mi><mo>)</mo></math></span>, where <span><math><mi>H</mi><mo>,</mo><mi>J</mi></math></span> are stabilisers in <em>G</em> of a vertex and incident edge, respectively. A first major application is presented concerning arc-transitive maps on surfaces: given a group <span><math><mi>G</mi><mo>=</mo><mo>〈</mo><mi>a</mi><mo>,</mo><mi>z</mi><mo>〉</mo></math></span> with <span><math><mo>|</mo><mi>z</mi><mo>|</mo><mo>=</mo><mn>2</mn></math></span> and <span><math><mo>|</mo><mi>a</mi><mo>|</mo></math></span> finite, the coset graph <span><math><mrow><mi>Cos</mi></mrow><mo>(</mo><mi>G</mi><mo>,</mo><mo>〈</mo><mi>a</mi><mo>〉</mo><mo>,</mo><mo>〈</mo><mi>z</mi><mo>〉</mo><mo>)</mo></math></span> is shown, under suitable finiteness assumptions, to have exactly two different arc-transitive embeddings as a <em>G</em>-arc-transitive map <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> (with <span><math><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>F</mi></math></span> the sets of vertices, edges and faces, respectively), namely, a <em>G-rotary</em> map if <span><math><mo>|</mo><mi>a</mi><mi>z</mi><mo>|</mo></math></span> is finite, and a <em>G-bi-rotary</em> map if <span><math><mo>|</mo><mi>z</mi><msup><mrow><mi>z</mi></mrow><mrow><mi>a</mi></mrow></msup><mo>|</mo></math></span> is finite. The <em>G</em>-rotary map can be represented as a coset geometry for <em>G</em>, extending the notion of a coset graph. However the <em>G</em>-bi-rotary map does not have such a representation, and the face boundary cycles must be specified in addition to incidences between faces and edges. In addition a coset geometry construction is given of a flag-regular map <span><math><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>,</mo><mi>F</mi><mo>)</mo></math></span> for non necessarily simple graphs. For all of these constructions it is proved that the face boundary cycles are simple cycles precisely when the given group acts faithfully on <span><math><mi>V</mi><mo>∪</mo><mi>F</mi></math></span>. Illustrative examples are given for graphs related to the <em>n</em>-dimensional hypercubes and the Petersen graph.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000443","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A well-known theorem of Sabidussi shows that a simple G-arc-transitive graph can be represented as a coset graph for the group G. This pivotal result is the standard way to turn problems about simple arc-transitive graphs into questions about groups. In this paper, the Sabidussi representation is extended to arc-transitive, not necessarily simple graphs which satisfy a local-finiteness condition: namely graphs with finite valency and finite edge-multiplicity. The construction yields a G-arc-transitive coset graph , where are stabilisers in G of a vertex and incident edge, respectively. A first major application is presented concerning arc-transitive maps on surfaces: given a group with and finite, the coset graph is shown, under suitable finiteness assumptions, to have exactly two different arc-transitive embeddings as a G-arc-transitive map (with the sets of vertices, edges and faces, respectively), namely, a G-rotary map if is finite, and a G-bi-rotary map if is finite. The G-rotary map can be represented as a coset geometry for G, extending the notion of a coset graph. However the G-bi-rotary map does not have such a representation, and the face boundary cycles must be specified in addition to incidences between faces and edges. In addition a coset geometry construction is given of a flag-regular map for non necessarily simple graphs. For all of these constructions it is proved that the face boundary cycles are simple cycles precisely when the given group acts faithfully on . Illustrative examples are given for graphs related to the n-dimensional hypercubes and the Petersen graph.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.