Short cycles of random permutations with cycle weights: Point processes approach

Pub Date : 2024-06-05 DOI:10.1016/j.spl.2024.110169
Oleksii Galganov , Andrii Ilienko
{"title":"Short cycles of random permutations with cycle weights: Point processes approach","authors":"Oleksii Galganov ,&nbsp;Andrii Ilienko","doi":"10.1016/j.spl.2024.110169","DOIUrl":null,"url":null,"abstract":"<div><p>We study the asymptotic behavior of short cycles of random permutations with cycle weights. More specifically, on a specially constructed metric space whose elements encode all possible cycles, we consider a point process containing all information on cycles of a given random permutation on <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></mrow></math></span>. The main result of the paper is the distributional convergence with respect to the vague topology of the above processes towards a Poisson point process as <span><math><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></math></span> for a wide range of cycle weights. As an application, we give several limit theorems for various statistics of cycles.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016771522400138X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behavior of short cycles of random permutations with cycle weights. More specifically, on a specially constructed metric space whose elements encode all possible cycles, we consider a point process containing all information on cycles of a given random permutation on {1,,n}. The main result of the paper is the distributional convergence with respect to the vague topology of the above processes towards a Poisson point process as n for a wide range of cycle weights. As an application, we give several limit theorems for various statistics of cycles.

分享
查看原文
有周期权重的随机排列的短周期:点过程方法
我们研究具有周期权重的随机排列的短周期渐近行为。更具体地说,在一个特殊构造的度量空间上,其元素编码了所有可能的循环,我们考虑的点过程包含了{1,...,n}上给定随机排列的循环的所有信息。本文的主要结果是,在很大的循环权重范围内,上述过程的模糊拓扑在 n→∞ 时向泊松点过程的分布收敛。作为应用,我们给出了各种循环统计的几个极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信