Noisy tensor recovery via nonconvex optimization with theoretical recoverability

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Meng Ding , Jinghua Yang , Jin-Jin Mei
{"title":"Noisy tensor recovery via nonconvex optimization with theoretical recoverability","authors":"Meng Ding ,&nbsp;Jinghua Yang ,&nbsp;Jin-Jin Mei","doi":"10.1016/j.aml.2024.109170","DOIUrl":null,"url":null,"abstract":"<div><p>Noisy tensor recovery aims to estimate underlying low-rank tensors from the noisy observations. Besides the sparse noise, tensor data can also be corrupted by the small dense noise. Existing methods typically use the Frobenius norm to handle the small dense noise. In this work, we build a new nonconvex model to decompose the low-rank and sparse components. To be specific, we employ the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> norm to handle the small dense noise term, the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> ‘norm’ to enforce the sparse outliers, and the tensor nuclear norm to model the underlying low-rank tensor. We develop an effective alternating minimization-based algorithm. Under certain conditions, we prove that the proposed method has a high probability of exactly recovering low-rank and sparse tensors. Numerical experiments showcase the advantage of our method.</p></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924001903","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Noisy tensor recovery aims to estimate underlying low-rank tensors from the noisy observations. Besides the sparse noise, tensor data can also be corrupted by the small dense noise. Existing methods typically use the Frobenius norm to handle the small dense noise. In this work, we build a new nonconvex model to decompose the low-rank and sparse components. To be specific, we employ the 1 norm to handle the small dense noise term, the 0 ‘norm’ to enforce the sparse outliers, and the tensor nuclear norm to model the underlying low-rank tensor. We develop an effective alternating minimization-based algorithm. Under certain conditions, we prove that the proposed method has a high probability of exactly recovering low-rank and sparse tensors. Numerical experiments showcase the advantage of our method.

通过具有理论可恢复性的非凸优化实现噪声张量恢复
噪声张量恢复的目的是从噪声观测中估算底层低秩张量。除了稀疏噪声,张量数据还可能受到小密度噪声的干扰。现有方法通常使用 Frobenius 准则来处理小密度噪声。在这项工作中,我们建立了一个新的非凸模型来分解低阶和稀疏成分。具体来说,我们使用 ℓ1 准则来处理小密度噪声项,使用 ℓ0 "准则 "来强制执行稀疏离群值,并使用张量核准则来为底层低阶张量建模。我们开发了一种有效的交替最小化算法。在特定条件下,我们证明了所提出的方法有很高的概率精确恢复低秩稀疏张量。数值实验展示了我们方法的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信