Marco Parillo, Daniele Vertulli, Federica Vaccarino, Carlo Augusto Mallio, Bruno Beomonte Zobel, Carlo Cosimo Quattrocchi
{"title":"The sensitivity of MIPs of 3D contrast-enhanced VIBE T1-weighted imaging for the detection of small brain metastases (≤ 5 mm) on 1.5 tesla MRI.","authors":"Marco Parillo, Daniele Vertulli, Federica Vaccarino, Carlo Augusto Mallio, Bruno Beomonte Zobel, Carlo Cosimo Quattrocchi","doi":"10.1177/19714009241260802","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate whether the use of Maximum Intensity Projection (MIP) images derived from contrast-enhanced 3D-T1-weighted volumetric interpolated breath-hold examination (VIBE) would allow more sensitive detection of small (≤5 mm) brain metastases (BM) compared with source as well as 2D-T1-weighted spin-echo (SE) images.</p><p><strong>Methods: </strong>We performed a single center retrospective study on subjects with BM who underwent 1.5 tesla brain magnetic resonance imaging. Two readers counted the number of small BM for each of the seven sets of contrast-enhanced images created: axial 2D-T1-weighted SE, 3D-T1-weighted VIBE, 2.5 mm-thick-MIP T1-weighted VIBE, and 5 mm-thick-MIP T1-weighted VIBE; sagittal 3D-T1-weighted VIBE, 2.5 mm-thick-MIP T1-weighted VIBE, and 5 mm-thick-MIP T1-weighted VIBE. Total number of lesions detected on each image type was compared. Sensitivity, the average rates of false negatives and false positives, and the mean discrepancy were evaluated.</p><p><strong>Results: </strong>A total of 403 small BM were identified in 49 patients. Significant differences were found: in the number of true positives and false negatives between the axial 2D-T1-weighted SE sequence and all other imaging techniques; in the number of false positives between the axial 2D-T1-weighted SE and the axial 3D-T1-weighted VIBE sequences. The two image types that combined offered the highest sensitivity were 2D-T1-weighted SE and axial 2.5 mm-thick-MIP T1-weighted VIBE. The axial 2D-T1-weighted SE sequence differed significantly in sensitivity from all other sequences.</p><p><strong>Conclusion: </strong>MIP images did not show a significant difference in sensitivity for the detection of small BM compared with native images.</p>","PeriodicalId":47358,"journal":{"name":"Neuroradiology Journal","volume":" ","pages":"744-750"},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroradiology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19714009241260802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To evaluate whether the use of Maximum Intensity Projection (MIP) images derived from contrast-enhanced 3D-T1-weighted volumetric interpolated breath-hold examination (VIBE) would allow more sensitive detection of small (≤5 mm) brain metastases (BM) compared with source as well as 2D-T1-weighted spin-echo (SE) images.
Methods: We performed a single center retrospective study on subjects with BM who underwent 1.5 tesla brain magnetic resonance imaging. Two readers counted the number of small BM for each of the seven sets of contrast-enhanced images created: axial 2D-T1-weighted SE, 3D-T1-weighted VIBE, 2.5 mm-thick-MIP T1-weighted VIBE, and 5 mm-thick-MIP T1-weighted VIBE; sagittal 3D-T1-weighted VIBE, 2.5 mm-thick-MIP T1-weighted VIBE, and 5 mm-thick-MIP T1-weighted VIBE. Total number of lesions detected on each image type was compared. Sensitivity, the average rates of false negatives and false positives, and the mean discrepancy were evaluated.
Results: A total of 403 small BM were identified in 49 patients. Significant differences were found: in the number of true positives and false negatives between the axial 2D-T1-weighted SE sequence and all other imaging techniques; in the number of false positives between the axial 2D-T1-weighted SE and the axial 3D-T1-weighted VIBE sequences. The two image types that combined offered the highest sensitivity were 2D-T1-weighted SE and axial 2.5 mm-thick-MIP T1-weighted VIBE. The axial 2D-T1-weighted SE sequence differed significantly in sensitivity from all other sequences.
Conclusion: MIP images did not show a significant difference in sensitivity for the detection of small BM compared with native images.
期刊介绍:
NRJ - The Neuroradiology Journal (formerly Rivista di Neuroradiologia) is the official journal of the Italian Association of Neuroradiology and of the several Scientific Societies from all over the world. Founded in 1988 as Rivista di Neuroradiologia, of June 2006 evolved in NRJ - The Neuroradiology Journal. It is published bimonthly.