5(S)-5-Carboxystrictosidine from the Root of Mappianthus iodoides Ameliorates H2O2-induced Apoptosis in H9c2 Cardiomyocytes via PI3K/AKT and ERK Pathways.
Ying Han, Junli Xi, Puzhao Zhang, Ming Gong, Tao Luo, Feng Shao, Yongxin Li, Lingyun Zhong, Hexiu Quan
{"title":"5(S)-5-Carboxystrictosidine from the Root of Mappianthus iodoides Ameliorates H2O2-induced Apoptosis in H9c2 Cardiomyocytes via PI3K/AKT and ERK Pathways.","authors":"Ying Han, Junli Xi, Puzhao Zhang, Ming Gong, Tao Luo, Feng Shao, Yongxin Li, Lingyun Zhong, Hexiu Quan","doi":"10.1055/a-2341-6175","DOIUrl":null,"url":null,"abstract":"<p><p>5(<i>S</i>)-5-carboxystrictosidine (5-CS) is a compound found in the root of <i>Mappianthus iodoides</i>, a traditional Chinese medicine used for the treatment of coronary artery disease. The aim of the present study was to investigate the protective effect of 5-CS against oxidative stress-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. 5-CS pretreatment significantly protected against H<sub>2</sub>O<sub>2</sub>-induced cell death, LDH leakage, and malondialdehyde (MDA) production, which are indicators for oxidative stress injury. 5-CS also enhanced the activity of SOD and CAT. In addition, 5-CS pretreatment significantly inhibited H<sub>2</sub>O<sub>2</sub>-induced apoptosis, as determined by flow cytometer, suppressed the activity of caspase-3 and caspase-9, and attenuated the activation of cleaved caspase-3 and caspase-9. 5-CS also increased Akt and ERK activation altered by H<sub>2</sub>O<sub>2</sub> using Western blot analysis. The PI3K-specific inhibitor LY294002 abolished 5-CS-induced Akt activation. The ERK-specific inhibitor PD98059 abolished 5-CS-induced ERK activation. Both LY294002 and PD98059 attenuated the protective effect of 5-CS on H9c2 cardiomyocytes against H<sub>2</sub>O<sub>2</sub>-induced apoptosis and cell death. Taken together, these results demonstrate that 5-CS prevents H<sub>2</sub>O<sub>2</sub>-induced oxidative stress injury in H9c2 cells by enhancing the activity of the endogenous antioxidant enzymes, inhibiting apoptosis, and modulating PI3K/Akt and ERK signaling pathways.</p>","PeriodicalId":20127,"journal":{"name":"Planta medica","volume":" ","pages":"885-895"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2341-6175","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
5(S)-5-carboxystrictosidine (5-CS) is a compound found in the root of Mappianthus iodoides, a traditional Chinese medicine used for the treatment of coronary artery disease. The aim of the present study was to investigate the protective effect of 5-CS against oxidative stress-induced apoptosis in H9c2 cardiomyocytes and the underlying mechanisms. 5-CS pretreatment significantly protected against H2O2-induced cell death, LDH leakage, and malondialdehyde (MDA) production, which are indicators for oxidative stress injury. 5-CS also enhanced the activity of SOD and CAT. In addition, 5-CS pretreatment significantly inhibited H2O2-induced apoptosis, as determined by flow cytometer, suppressed the activity of caspase-3 and caspase-9, and attenuated the activation of cleaved caspase-3 and caspase-9. 5-CS also increased Akt and ERK activation altered by H2O2 using Western blot analysis. The PI3K-specific inhibitor LY294002 abolished 5-CS-induced Akt activation. The ERK-specific inhibitor PD98059 abolished 5-CS-induced ERK activation. Both LY294002 and PD98059 attenuated the protective effect of 5-CS on H9c2 cardiomyocytes against H2O2-induced apoptosis and cell death. Taken together, these results demonstrate that 5-CS prevents H2O2-induced oxidative stress injury in H9c2 cells by enhancing the activity of the endogenous antioxidant enzymes, inhibiting apoptosis, and modulating PI3K/Akt and ERK signaling pathways.
期刊介绍:
Planta Medica is one of the leading international journals in the field of natural products – including marine organisms, fungi as well as micro-organisms – and medicinal plants. Planta Medica accepts original research papers, reviews, minireviews and perspectives from researchers worldwide. The journal publishes 18 issues per year.
The following areas of medicinal plants and natural product research are covered:
-Biological and Pharmacological Activities
-Natural Product Chemistry & Analytical Studies
-Pharmacokinetic Investigations
-Formulation and Delivery Systems of Natural Products.
The journal explicitly encourages the submission of chemically characterized extracts.