Alexey V. Romanov, Vladimir V. Shakhparonov, Kyrill B. Gerasimov, Leonid P. Korzun
{"title":"Occipital-synarcual joint mobility in ratfishes (Chimaeridae) and its possible adaptive role","authors":"Alexey V. Romanov, Vladimir V. Shakhparonov, Kyrill B. Gerasimov, Leonid P. Korzun","doi":"10.1002/jmor.21740","DOIUrl":null,"url":null,"abstract":"<p>The neurocranial elevation generated by axial muscles is widespread among aquatic gnathostomes. The mechanism has two functions: first, it contributes to the orientation of the mouth gape, and second, it is involved in suction feeding. To provide such mobility, anatomical specialization of the anterior part of the vertebral column has evolved in many fish species. In modern chimaeras, the anterior part of the vertebral column develops into the synarcual. Possible biological roles of the occipital-synarcual joint have not been discussed before. Dissections of the head of two species of ratfishes (<i>Chimaera monstrosa</i> and <i>Chimaera phantasma</i>) confirmed the heterocoely of the articulation surface between the synarcual and the neurocranium, indicating the possibility of movements in the sagittal and frontal planes. Muscles capable of controlling the movements of the neurocranium were described. The <i>m. epaxialis</i> is capable of elevating the head, the <i>m. coracomandibularis</i> is capable of lowering it if the mandible is anchored by the adductor. Lateral flexion is performed by the <i>m. lateroventralis</i>, for which this function was proposed for the first time. The first description of the <i>m. epaxialis profundus</i> is given, its function is to be elucidated in the future. Manipulations with joint preparations revealed a pronounced amplitude of movement in the sagittal and frontal planes. Since chimaeras generate weak decrease in pressure in the oropharyngeal cavity when sucking in prey, we hypothesised the primary effect of neurocranial elevation, in addition to the evident lateral head mobility, is accurate prey targeting.</p>","PeriodicalId":16528,"journal":{"name":"Journal of Morphology","volume":"285 6","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Morphology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmor.21740","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The neurocranial elevation generated by axial muscles is widespread among aquatic gnathostomes. The mechanism has two functions: first, it contributes to the orientation of the mouth gape, and second, it is involved in suction feeding. To provide such mobility, anatomical specialization of the anterior part of the vertebral column has evolved in many fish species. In modern chimaeras, the anterior part of the vertebral column develops into the synarcual. Possible biological roles of the occipital-synarcual joint have not been discussed before. Dissections of the head of two species of ratfishes (Chimaera monstrosa and Chimaera phantasma) confirmed the heterocoely of the articulation surface between the synarcual and the neurocranium, indicating the possibility of movements in the sagittal and frontal planes. Muscles capable of controlling the movements of the neurocranium were described. The m. epaxialis is capable of elevating the head, the m. coracomandibularis is capable of lowering it if the mandible is anchored by the adductor. Lateral flexion is performed by the m. lateroventralis, for which this function was proposed for the first time. The first description of the m. epaxialis profundus is given, its function is to be elucidated in the future. Manipulations with joint preparations revealed a pronounced amplitude of movement in the sagittal and frontal planes. Since chimaeras generate weak decrease in pressure in the oropharyngeal cavity when sucking in prey, we hypothesised the primary effect of neurocranial elevation, in addition to the evident lateral head mobility, is accurate prey targeting.
期刊介绍:
The Journal of Morphology welcomes articles of original research in cytology, protozoology, embryology, and general morphology. Articles generally should not exceed 35 printed pages. Preliminary notices or articles of a purely descriptive morphological or taxonomic nature are not included. No paper which has already been published will be accepted, nor will simultaneous publications elsewhere be allowed.
The Journal of Morphology publishes research in functional, comparative, evolutionary and developmental morphology from vertebrates and invertebrates. Human and veterinary anatomy or paleontology are considered when an explicit connection to neontological animal morphology is presented, and the paper contains relevant information for the community of animal morphologists. Based on our long tradition, we continue to seek publishing the best papers in animal morphology.