A Comparison of Automatically Extracted Quantitative EEG Features for Seizure Risk Stratification in Neonatal Encephalopathy.

IF 2.3 4区 医学 Q3 CLINICAL NEUROLOGY
Journal of Clinical Neurophysiology Pub Date : 2025-01-01 Epub Date: 2024-06-10 DOI:10.1097/WNP.0000000000001067
Jennifer C Keene, Maren E Loe, Talie Fulton, Maire Keene, Michael J Morrissey, Stuart R Tomko, Zachary A Vesoulis, John M Zempel, ShiNung Ching, Réjean M Guerriero
{"title":"A Comparison of Automatically Extracted Quantitative EEG Features for Seizure Risk Stratification in Neonatal Encephalopathy.","authors":"Jennifer C Keene, Maren E Loe, Talie Fulton, Maire Keene, Michael J Morrissey, Stuart R Tomko, Zachary A Vesoulis, John M Zempel, ShiNung Ching, Réjean M Guerriero","doi":"10.1097/WNP.0000000000001067","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Seizures occur in up to 40% of neonates with neonatal encephalopathy. Earlier identification of seizures leads to more successful seizure treatment, but is often delayed because of limited availability of continuous EEG monitoring. Clinical variables poorly stratify seizure risk, and EEG use to stratify seizure risk has previously been limited by need for manual review and artifact exclusion. The goal of this study is to compare the utility of automatically extracted quantitative EEG (qEEG) features for seizure risk stratification.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of neonates with moderate-to-severe neonatal encephalopathy who underwent therapeutic hypothermia at a single center. The first 24 hours of EEG underwent automated artifact removal and qEEG analysis, comparing qEEG features for seizure risk stratification.</p><p><strong>Results: </strong>The study included 150 neonates and compared the 36 (23%) with seizures with those without. Absolute spectral power best stratified seizure risk with area under the curve ranging from 63% to 71%, followed by range EEG lower and upper margin, median and SD of the range EEG lower margin. No features were significantly more predictive in the hour before seizure onset. Clinical examination was not associated with seizure risk.</p><p><strong>Conclusions: </strong>Automatically extracted qEEG features were more predictive than clinical examination in stratifying neonatal seizure risk during therapeutic hypothermia. qEEG represents a potential practical bedside tool to individualize intensity and duration of EEG monitoring and decrease time to seizure recognition. Future work is needed to refine and combine qEEG features to improve risk stratification.</p>","PeriodicalId":15516,"journal":{"name":"Journal of Clinical Neurophysiology","volume":" ","pages":"57-63"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNP.0000000000001067","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Seizures occur in up to 40% of neonates with neonatal encephalopathy. Earlier identification of seizures leads to more successful seizure treatment, but is often delayed because of limited availability of continuous EEG monitoring. Clinical variables poorly stratify seizure risk, and EEG use to stratify seizure risk has previously been limited by need for manual review and artifact exclusion. The goal of this study is to compare the utility of automatically extracted quantitative EEG (qEEG) features for seizure risk stratification.

Methods: We conducted a retrospective analysis of neonates with moderate-to-severe neonatal encephalopathy who underwent therapeutic hypothermia at a single center. The first 24 hours of EEG underwent automated artifact removal and qEEG analysis, comparing qEEG features for seizure risk stratification.

Results: The study included 150 neonates and compared the 36 (23%) with seizures with those without. Absolute spectral power best stratified seizure risk with area under the curve ranging from 63% to 71%, followed by range EEG lower and upper margin, median and SD of the range EEG lower margin. No features were significantly more predictive in the hour before seizure onset. Clinical examination was not associated with seizure risk.

Conclusions: Automatically extracted qEEG features were more predictive than clinical examination in stratifying neonatal seizure risk during therapeutic hypothermia. qEEG represents a potential practical bedside tool to individualize intensity and duration of EEG monitoring and decrease time to seizure recognition. Future work is needed to refine and combine qEEG features to improve risk stratification.

自动提取定量脑电图特征用于新生儿脑病发作风险分层的比较。
目的:在患有新生儿脑病的新生儿中,高达 40% 的新生儿会出现癫痫发作。更早地识别癫痫发作会使癫痫治疗更加成功,但由于连续脑电图监测的可用性有限,因此往往会延误治疗。临床变量很难对癫痫发作风险进行分层,而使用脑电图对癫痫发作风险进行分层也因需要人工复查和排除伪影而受到限制。本研究的目的是比较自动提取的定量脑电图(qEEG)特征对癫痫发作风险分层的实用性:我们对在一个中心接受治疗性低温的中重度新生儿脑病新生儿进行了回顾性分析。对前 24 小时的脑电图进行了自动伪影去除和 qEEG 分析,比较了用于癫痫发作风险分层的 qEEG 特征:该研究共纳入 150 名新生儿,对其中 36 名(23%)有癫痫发作的新生儿和没有癫痫发作的新生儿进行了比较。绝对频谱功率对癫痫发作风险的分层效果最好,其曲线下面积为 63% 至 71%,其次是脑电图下缘和上缘范围、脑电图下缘范围的中位数和标度。在癫痫发作前一小时,没有任何特征具有明显的预测性。临床检查与癫痫发作风险无关:在对治疗性低温期间的新生儿癫痫发作风险进行分层时,自动提取的 qEEG 特征比临床检查更具预测性。qEEG 是一种潜在的实用床旁工具,可用于个性化脑电图监测的强度和持续时间,并缩短识别癫痫发作的时间。未来的工作需要完善和结合 qEEG 特征,以改善风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Neurophysiology
Journal of Clinical Neurophysiology 医学-临床神经学
CiteScore
4.60
自引率
4.20%
发文量
198
审稿时长
6-12 weeks
期刊介绍: ​The Journal of Clinical Neurophysiology features both topical reviews and original research in both central and peripheral neurophysiology, as related to patient evaluation and treatment. Official Journal of the American Clinical Neurophysiology Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信