{"title":"First molecular characterization of Burkholderia mallei strains isolated from horses in Mongolia","authors":"Yoshiki Ichikawa , Liushiqi Borjigin , Batchuluun Enkhtuul , Ochirbat Khurtsbaatar , Keisuke Aoshima , Atsushi Kobayashi , Vanaabaatar Batbaatar , Takashi Kimura","doi":"10.1016/j.meegid.2024.105616","DOIUrl":null,"url":null,"abstract":"<div><p>Glanders, a highly contagious and often fatal disease affecting equids, is caused by <em>Burkholderia mallei</em>. Although sporadic cases of equine glanders have recently been documented in Mongolia, genome sequencing and molecular studies of the bacteria within this region are lacking. This study provided the first molecular characterization of <em>B. mallei</em> isolated from four native Mongolian horses from two different provinces in 2019 and 2022 by applying whole-genome sequencing with two SNP types (previously developed genotyping with 15 SNP markers that provide global coverage of the <em>B. mallei</em> population and the core genome coding SNP typing developed in this study). The Mongolian isolates were located within the L3B1 cluster, which was previously associated with the V-120 strain from Russia. Within the L3B1 cluster shared by neighboring countries, they were in a unique subbranch. In this study, specific SNP markers unique to the Mongolian strains were identified to track these strains using a high-resolution melting analysis (HRMA). This study revealed the unique phylogenetic background of Mongolian strains isolated from the eastern part of Mongolia. HRMA specific to the Mongolian subbranch may contribute to the molecular epidemiological monitoring of glanders in Mongolia and surrounding countries.</p></div>","PeriodicalId":54986,"journal":{"name":"Infection Genetics and Evolution","volume":"123 ","pages":"Article 105616"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1567134824000674/pdfft?md5=14809ce6db554fa9a4d281a2455cd70f&pid=1-s2.0-S1567134824000674-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infection Genetics and Evolution","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567134824000674","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Glanders, a highly contagious and often fatal disease affecting equids, is caused by Burkholderia mallei. Although sporadic cases of equine glanders have recently been documented in Mongolia, genome sequencing and molecular studies of the bacteria within this region are lacking. This study provided the first molecular characterization of B. mallei isolated from four native Mongolian horses from two different provinces in 2019 and 2022 by applying whole-genome sequencing with two SNP types (previously developed genotyping with 15 SNP markers that provide global coverage of the B. mallei population and the core genome coding SNP typing developed in this study). The Mongolian isolates were located within the L3B1 cluster, which was previously associated with the V-120 strain from Russia. Within the L3B1 cluster shared by neighboring countries, they were in a unique subbranch. In this study, specific SNP markers unique to the Mongolian strains were identified to track these strains using a high-resolution melting analysis (HRMA). This study revealed the unique phylogenetic background of Mongolian strains isolated from the eastern part of Mongolia. HRMA specific to the Mongolian subbranch may contribute to the molecular epidemiological monitoring of glanders in Mongolia and surrounding countries.
期刊介绍:
(aka Journal of Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases -- MEEGID)
Infectious diseases constitute one of the main challenges to medical science in the coming century. The impressive development of molecular megatechnologies and of bioinformatics have greatly increased our knowledge of the evolution, transmission and pathogenicity of infectious diseases. Research has shown that host susceptibility to many infectious diseases has a genetic basis. Furthermore, much is now known on the molecular epidemiology, evolution and virulence of pathogenic agents, as well as their resistance to drugs, vaccines, and antibiotics. Equally, research on the genetics of disease vectors has greatly improved our understanding of their systematics, has increased our capacity to identify target populations for control or intervention, and has provided detailed information on the mechanisms of insecticide resistance.
However, the genetics and evolutionary biology of hosts, pathogens and vectors have tended to develop as three separate fields of research. This artificial compartmentalisation is of concern due to our growing appreciation of the strong co-evolutionary interactions among hosts, pathogens and vectors.
Infection, Genetics and Evolution and its companion congress [MEEGID](http://www.meegidconference.com/) (for Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases) are the main forum acting for the cross-fertilization between evolutionary science and biomedical research on infectious diseases.
Infection, Genetics and Evolution is the only journal that welcomes articles dealing with the genetics and evolutionary biology of hosts, pathogens and vectors, and coevolution processes among them in relation to infection and disease manifestation. All infectious models enter the scope of the journal, including pathogens of humans, animals and plants, either parasites, fungi, bacteria, viruses or prions. The journal welcomes articles dealing with genetics, population genetics, genomics, postgenomics, gene expression, evolutionary biology, population dynamics, mathematical modeling and bioinformatics. We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services .