Wenyun Zhang, Yuhan Zheng, Cheng Yang, Zhimin Yu, Yuan Zhao, Li Yang, Yanbo Li, Qing Liu, Chongyan Xu, Jun Su, Tingting Yan
{"title":"Experimental study of the biological properties of nmHA-SiO<sub>2</sub> fiber materials prepared by electrospinning technology.","authors":"Wenyun Zhang, Yuhan Zheng, Cheng Yang, Zhimin Yu, Yuan Zhao, Li Yang, Yanbo Li, Qing Liu, Chongyan Xu, Jun Su, Tingting Yan","doi":"10.4012/dmj.2023-274","DOIUrl":null,"url":null,"abstract":"<p><p>To study the biocompatibility of nanohydroxyapatite (nmHA)-SiO<sub>2</sub> fiber material and its efficacy in guided bone regeneration. ① The cytotoxicity of the nmHA-SiO<sub>2</sub> fiber material to MC3T3-E1 cells was determined by CCK-8 assay. The adhesion of cells on the surface of the material was observed. ② Bone defects were prepared in the skull of three groups of New Zealand white rabbits. The following treatments were administered: implantation of nmHA-SiO<sub>2</sub>, implantation of Bio-Oss, and no treatment. The defects were then covered with nmHA-SiO<sub>2</sub> membrane or Hai'ao oral repair membrane. Animal samples were analyzed by gross observation, micro-computed tomography, hematoxylin-eosin staining and Masson staining. The data were statistically analyzed by multivariate analysis of variance to evaluate the repair of bone defects. ① The nmHA-SiO<sub>2</sub> fiber material has suitable biocompatibility. ② The nmHA-SiO<sub>2</sub> fiber material performed more effectively as a barrier membrane than other bone substitute materials in GBR model rabbits.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"495-503"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2023-274","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
To study the biocompatibility of nanohydroxyapatite (nmHA)-SiO2 fiber material and its efficacy in guided bone regeneration. ① The cytotoxicity of the nmHA-SiO2 fiber material to MC3T3-E1 cells was determined by CCK-8 assay. The adhesion of cells on the surface of the material was observed. ② Bone defects were prepared in the skull of three groups of New Zealand white rabbits. The following treatments were administered: implantation of nmHA-SiO2, implantation of Bio-Oss, and no treatment. The defects were then covered with nmHA-SiO2 membrane or Hai'ao oral repair membrane. Animal samples were analyzed by gross observation, micro-computed tomography, hematoxylin-eosin staining and Masson staining. The data were statistically analyzed by multivariate analysis of variance to evaluate the repair of bone defects. ① The nmHA-SiO2 fiber material has suitable biocompatibility. ② The nmHA-SiO2 fiber material performed more effectively as a barrier membrane than other bone substitute materials in GBR model rabbits.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.