Lingling Zhang, Xia Wang, Chong Gong, Weiyan Sun, Zihan Lu
{"title":"ZIF-Co3O4@ZIF-Derived Urchin-Like Hierarchically Porous Carbon as Efficient Bifunctional Oxygen Electrocatalysts","authors":"Lingling Zhang, Xia Wang, Chong Gong, Weiyan Sun, Zihan Lu","doi":"10.1002/open.202400057","DOIUrl":null,"url":null,"abstract":"<p>Co<sub>3</sub>O<sub>4</sub> nanoparticles were sandwiched into interlayers between ZIF-8 and ZIF-67 to form ZIF-Co<sub>3</sub>O<sub>4</sub>@ZIF precursors. Pyrolysis of ZIF-Co<sub>3</sub>O<sub>4</sub>@ZIF yielded an urchin-like hierarchically porous carbon (Co@CNT/NC), the thorns of which were carbon nanotubes embedded Co nanoparticles. With large specific surface area and hierarchically porous structure, as-prepared Co@CNT/NC exhibited excellent bifunctional oxygen electrocatalytic performances. It has good ORR performance with E<sub>1/2</sub> of 0.85 V, which exceeds the Pt/C half-wave potential (E<sub>1/2</sub>=0.83 V). In addition, Co@CNT/NC has an OER performance close to that of RuO<sub>2</sub>. To further demonstrate the effect of Co modifying on the properties, the samples were subjected to acid washing treatment. Co-based nanoparticles were proved to After acid washing, there was obvious loss of Co particles in Co@CNT/NC, resulting in poor oxygen electrocatalysis. So, the pyrolysis products of ZIF-8-Co<sub>3</sub>O<sub>4</sub>@ZIF-67 retained large specific surface area and porous structure can be retained, and on the other hand, the carbon tube structure and original polyhedron framework. Besides, existence of Co nanoparticle@carbon nanotube provided more active sites and improved the ORR and OER performances.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202400057","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/open.202400057","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Co3O4 nanoparticles were sandwiched into interlayers between ZIF-8 and ZIF-67 to form ZIF-Co3O4@ZIF precursors. Pyrolysis of ZIF-Co3O4@ZIF yielded an urchin-like hierarchically porous carbon (Co@CNT/NC), the thorns of which were carbon nanotubes embedded Co nanoparticles. With large specific surface area and hierarchically porous structure, as-prepared Co@CNT/NC exhibited excellent bifunctional oxygen electrocatalytic performances. It has good ORR performance with E1/2 of 0.85 V, which exceeds the Pt/C half-wave potential (E1/2=0.83 V). In addition, Co@CNT/NC has an OER performance close to that of RuO2. To further demonstrate the effect of Co modifying on the properties, the samples were subjected to acid washing treatment. Co-based nanoparticles were proved to After acid washing, there was obvious loss of Co particles in Co@CNT/NC, resulting in poor oxygen electrocatalysis. So, the pyrolysis products of ZIF-8-Co3O4@ZIF-67 retained large specific surface area and porous structure can be retained, and on the other hand, the carbon tube structure and original polyhedron framework. Besides, existence of Co nanoparticle@carbon nanotube provided more active sites and improved the ORR and OER performances.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.