Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps.

IF 6.3 1区 医学 Q1 DERMATOLOGY
Burns & Trauma Pub Date : 2024-06-09 eCollection Date: 2024-01-01 DOI:10.1093/burnst/tkae035
Xuwei Zhu, Gaoxiang Yu, Ya Lv, Ningning Yang, Yinuo Zhao, Feida Li, Jiayi Zhao, Zhuliu Chen, Yingying Lai, Liang Chen, Xiangyang Wang, Jian Xiao, Yuepiao Cai, Yongzeng Feng, Jian Ding, Weiyang Gao, Kailiang Zhou, Hui Xu
{"title":"Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps.","authors":"Xuwei Zhu, Gaoxiang Yu, Ya Lv, Ningning Yang, Yinuo Zhao, Feida Li, Jiayi Zhao, Zhuliu Chen, Yingying Lai, Liang Chen, Xiangyang Wang, Jian Xiao, Yuepiao Cai, Yongzeng Feng, Jian Ding, Weiyang Gao, Kailiang Zhou, Hui Xu","doi":"10.1093/burnst/tkae035","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression.</p><p><strong>Methods: </strong>A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps.</p><p><strong>Results: </strong>NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206.</p><p><strong>Conclusions: </strong>NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.</p>","PeriodicalId":9553,"journal":{"name":"Burns & Trauma","volume":"12 ","pages":"tkae035"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11162832/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Burns & Trauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/burnst/tkae035","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression.

Methods: A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps.

Results: NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206.

Conclusions: NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.

表皮生长因子家族成员 Neuregulin-1 可减轻 STING 介导的缺血性皮瓣的脓毒症和坏死。
背景:在临床实践中,确保随机皮瓣远端在低灌注(缺血)情况下存活十分困难。有效预防程序性细胞死亡是抑制缺血皮瓣坏死的潜在策略。干扰素基因刺激器(STING)通路的激活会促进炎症并导致细胞死亡。表皮生长因子家族成员神经胶质蛋白-1(NRG1)通过激活蛋白激酶 B(AKT)信号通路减少细胞死亡。此外,AKT 信号还能负向调节 STING 的活性。我们的目的是验证注射 NRG1 在防止皮瓣坏死方面的功效。此外,我们还研究了 NRG1 是否能通过抑制 STING 来抑制脓毒症和坏死,从而有效提高缺血皮瓣的存活率:方法:在 C57BL/6 小鼠背上制作随机图案皮瓣模型。测定皮瓣存活面积。通过激光多普勒血流分析评估皮瓣的血液供应和血管网络。皮瓣切片的分化簇 34 免疫组织化学(IHC)和血涂片及伊红(H&E)染色显示了微血管。转录组测序分析揭示了 NRG1 促进缺血性皮瓣存活的机制。通过IHC、免疫荧光和Western印迹检查了皮瓣中的血管生成、氧化应激、坏死、裂解和信号通路相关指标的水平。用包装腺相关病毒(AAV)激活皮瓣中的STING:结果:NRG1促进了缺血性皮瓣的存活。结果:NRG1促进了缺血皮瓣的存活,应用NRG1后发现缺血皮瓣中皮下血管网络和新生血管增加。转录组基因本体富集分析和蛋白质水平检测表明,NRG1 组的坏死、热解和 STING 活性降低。NRG1 处理后,AKT 和叉头框 O3a(FOXO3a)的磷酸化增加。AAV 诱导的皮瓣中 STING 表达的增加逆转了 NRG1 的治疗效果。应用 AKT 抑制剂 MK2206 后,NRG1 磷酸化 AKT-FOXO3a、抑制 STING 和促进皮瓣存活的能力被取消:结论:NRG1通过激活AKT-FOXO3a信号通路抑制STING的激活并促进缺血性皮瓣的存活,从而抑制热凋亡和坏死。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Burns & Trauma
Burns & Trauma 医学-皮肤病学
CiteScore
8.40
自引率
9.40%
发文量
186
审稿时长
6 weeks
期刊介绍: The first open access journal in the field of burns and trauma injury in the Asia-Pacific region, Burns & Trauma publishes the latest developments in basic, clinical and translational research in the field. With a special focus on prevention, clinical treatment and basic research, the journal welcomes submissions in various aspects of biomaterials, tissue engineering, stem cells, critical care, immunobiology, skin transplantation, and the prevention and regeneration of burns and trauma injuries. With an expert Editorial Board and a team of dedicated scientific editors, the journal enjoys a large readership and is supported by Southwest Hospital, which covers authors'' article processing charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信