Shibani Bhattacharya, Kristen M. Varney, Tassadite Dahmane, Bruce A. Johnson, David J. Weber, Arthur G. Palmer III
{"title":"Deuterium spin relaxation of fractionally deuterated ribonuclease H using paired 475 and 950 MHz NMR spectrometers","authors":"Shibani Bhattacharya, Kristen M. Varney, Tassadite Dahmane, Bruce A. Johnson, David J. Weber, Arthur G. Palmer III","doi":"10.1007/s10858-024-00443-w","DOIUrl":null,"url":null,"abstract":"<div><p>Deuterium (<sup>2</sup>H) spin relaxation of <sup>13</sup>CH<sub>2</sub>D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The <i>B</i><sub>0</sub> dependence of the <sup>2</sup>H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies <i>J</i>(0), <i>J</i>(<i>ω</i><sub>D</sub>) and <i>J</i>(2<i>ω</i><sub>D</sub>). In this study, the linear relation between <sup>2</sup>H relaxation rates at <i>B</i><sub>0</sub> fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate <sup>13</sup>C-<sup>12</sup>C labeled sample of <i>E. coli</i> RNase H. Deuterium relaxation rate constants (<i>R</i><sub>1</sub>, <i>R</i><sub>1<i>ρ</i></sub>, <i>R</i><sub><i>Q</i></sub>, <i>R</i><sub><i>AP</i></sub>) were measured for 57 well-resolved <sup>13</sup>CH<sub>2</sub>D moieties in RNase H at <sup>1</sup>H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at <i>B</i><sub>0</sub> fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six <i>J</i>(<i>ω</i><sub>D</sub>) values for each methyl peak. The <i>J</i>(<i>ω</i>) profile for each peak was fit to the original (<i>τ</i><sub><i>M</i></sub>, <i>S</i><sub><i>f</i></sub><sup>2</sup>, <i>τ</i><sub><i>f</i></sub>) or extended model-free function (<i>τ</i><sub><i>M</i></sub>, <i>S</i><sub><i>f</i></sub><sup>2</sup>, <i>S</i><sub><i>s</i></sub><sup>2</sup>, <i>τ</i><sub><i>f</i></sub>, <i>τ</i><sub><i>s</i></sub>) to obtain optimized dynamic parameters.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10858-024-00443-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Deuterium (2H) spin relaxation of 13CH2D methyl groups has been widely applied to investigate picosecond-to-nanosecond conformational dynamics in proteins by solution-state NMR spectroscopy. The B0 dependence of the 2H spin relaxation rates is represented by a linear relationship between the spectral density function at three discrete frequencies J(0), J(ωD) and J(2ωD). In this study, the linear relation between 2H relaxation rates at B0 fields separated by a factor of two and the interpolation of rates at intermediate frequencies are combined for a more robust approach for spectral density mapping. The general usefulness of the approach is demonstrated on a fractionally deuterated (55%) and alternate 13C-12C labeled sample of E. coli RNase H. Deuterium relaxation rate constants (R1, R1ρ, RQ, RAP) were measured for 57 well-resolved 13CH2D moieties in RNase H at 1H frequencies of 475 MHz, 500 MHz, 900 MHz, and 950 MHz. The spectral density mapping of the 475/950 MHz data combination was performed independently and jointly to validate the expected relationship between data recorded at B0 fields separated by a factor of two. The final analysis was performed by jointly analyzing 475/950 MHz rates with 700 MHz rates interpolated from 500/900 MHz data to yield six J(ωD) values for each methyl peak. The J(ω) profile for each peak was fit to the original (τM, Sf2, τf) or extended model-free function (τM, Sf2, Ss2, τf, τs) to obtain optimized dynamic parameters.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.