MXene-based nanocomposite for electrochemical hydrogen evolution reaction: Experimental and theoretical advances

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Agam Pamungkas , Fida N. Rahmani , Fariz Ikramullah , St Mardiana , Grandprix T.M. Kadja
{"title":"MXene-based nanocomposite for electrochemical hydrogen evolution reaction: Experimental and theoretical advances","authors":"Agam Pamungkas ,&nbsp;Fida N. Rahmani ,&nbsp;Fariz Ikramullah ,&nbsp;St Mardiana ,&nbsp;Grandprix T.M. Kadja","doi":"10.1016/j.flatc.2024.100692","DOIUrl":null,"url":null,"abstract":"<div><p>MXene’s outstanding performance in driving the Hydrogen Evolution Reaction (HER) has attracted significant interest. The HER involves hydrogen generation by electrolyzing water. It is widely recognized that hydrogen represents a renewable and future-oriented alternative energy source that is currently receiving significant attention. On the other hand, MXenes also have a crucial function as catalysts, elevating the pace and effectiveness of chemical reactions. Moreover, their properties make them essential in diverse fields, contributing to advancements in energy storage, sensing technology, and catalysis for improved reactions. Herein, we highlighted MXene nanocomposite materials from synthesized to utilization in HER reaction both experimentally and theoretically. Various MXene-based nanocomposites, which consist of monomer, carbon, and oxide that can be used in hydrogen evolution reactions, are also elaborated in detail. Ultimately, we concluded this review with the future prospect of MXenes in electrochemical HER.</p></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"46 ","pages":"Article 100692"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262724000862","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MXene’s outstanding performance in driving the Hydrogen Evolution Reaction (HER) has attracted significant interest. The HER involves hydrogen generation by electrolyzing water. It is widely recognized that hydrogen represents a renewable and future-oriented alternative energy source that is currently receiving significant attention. On the other hand, MXenes also have a crucial function as catalysts, elevating the pace and effectiveness of chemical reactions. Moreover, their properties make them essential in diverse fields, contributing to advancements in energy storage, sensing technology, and catalysis for improved reactions. Herein, we highlighted MXene nanocomposite materials from synthesized to utilization in HER reaction both experimentally and theoretically. Various MXene-based nanocomposites, which consist of monomer, carbon, and oxide that can be used in hydrogen evolution reactions, are also elaborated in detail. Ultimately, we concluded this review with the future prospect of MXenes in electrochemical HER.

Abstract Image

用于电化学氢进化反应的 MXene 基纳米复合材料:实验和理论进展
MXene 在驱动氢进化反应(HER)方面的出色性能引起了人们的极大兴趣。氢进化反应包括通过电解水产生氢气。氢是一种可再生的、面向未来的替代能源,目前正受到广泛关注。另一方面,二氧化二烯还具有催化剂的重要功能,可加快化学反应的速度并提高其效率。此外,它们的特性还使其在多个领域发挥着重要作用,有助于推动能源储存、传感技术和催化反应的改进。在本文中,我们从实验和理论两方面重点介绍了 MXene 纳米复合材料从合成到在 HER 反应中的应用。我们还详细阐述了各种基于 MXene 的纳米复合材料,它们由单体、碳和氧化物组成,可用于氢进化反应。最后,我们总结了 MXene 在电化学 HER 中的未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信