Two models for sandpile growth in weighted graphs

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
J.M. Mazón, J. Toledo
{"title":"Two models for sandpile growth in weighted graphs","authors":"J.M. Mazón,&nbsp;J. Toledo","doi":"10.1016/j.nonrwa.2024.104155","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we study <span><math><mi>∞</mi></math></span>-Laplacian type diffusion equations in weighted graphs obtained as limit as <span><math><mrow><mi>p</mi><mo>→</mo><mi>∞</mi></mrow></math></span> to two types of <span><math><mi>p</mi></math></span>-Laplacian evolution equations in such graphs. We propose these diffusion equations, that are governed by the subdifferential of a convex energy functionals associated to the indicator function of the set <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>G</mi></mrow></msubsup><mo>≔</mo><mfenced><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>:</mo><mspace></mspace><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>≤</mo><mn>1</mn><mspace></mspace><mspace></mspace><mi>i</mi><mi>f</mi><mspace></mspace><mspace></mspace><mi>x</mi><mo>∼</mo><mi>y</mi></mrow></mfenced></mrow></math></span> and the set <span><math><mrow><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>w</mi></mrow></msubsup><mo>≔</mo><mfenced><mrow><mi>u</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mrow><mo>(</mo><mi>V</mi><mo>,</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>G</mi></mrow></msub><mo>)</mo></mrow><mspace></mspace><mo>:</mo><mspace></mspace><mo>|</mo><mi>u</mi><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>−</mo><mi>u</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>|</mo><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msqrt><mrow><msub><mrow><mi>w</mi></mrow><mrow><mi>x</mi><mi>y</mi></mrow></msub></mrow></msqrt></mrow></mfrac><mspace></mspace><mspace></mspace><mi>i</mi><mi>f</mi><mspace></mspace><mspace></mspace><mi>x</mi><mo>∼</mo><mi>y</mi></mrow></mfenced></mrow></math></span> as models for sandpile growth in weighted graphs. Moreover, we also analyse the collapse of the initial condition when it does not belong to the stable sets <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>G</mi></mrow></msubsup></math></span> or <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>w</mi></mrow></msubsup></math></span> by means of an abstract result given in Bénilan (2003). We give an interpretation of the limit problems in terms of Monge–Kantorovich mass transport theory. Finally, we give some explicit solutions of simple examples that illustrate the dynamics of the sandpile growing or collapsing.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1468121824000956/pdfft?md5=20687dd0e01f3c2727a6b21b5f35cead&pid=1-s2.0-S1468121824000956-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000956","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study -Laplacian type diffusion equations in weighted graphs obtained as limit as p to two types of p-Laplacian evolution equations in such graphs. We propose these diffusion equations, that are governed by the subdifferential of a convex energy functionals associated to the indicator function of the set KGuL2(V,νG):|u(y)u(x)|1ifxy and the set KwuL2(V,νG):|u(y)u(x)|1wxyifxy as models for sandpile growth in weighted graphs. Moreover, we also analyse the collapse of the initial condition when it does not belong to the stable sets KG or Kw by means of an abstract result given in Bénilan (2003). We give an interpretation of the limit problems in terms of Monge–Kantorovich mass transport theory. Finally, we give some explicit solutions of simple examples that illustrate the dynamics of the sandpile growing or collapsing.

加权图中沙堆增长的两个模型
本文研究了加权图中的∞-拉普拉茨型扩散方程,该方程是加权图中两类 p-拉普拉茨演化方程的 p→∞ 的极限。我们提出的这些扩散方程受与集合 K∞G≔u∈L2(V,νG) 的指示函数相关的凸能函数的子差分支配:|u(y)-u(x)|≤1ifx∼y和集合K∞w≔u∈L2(V,νG):|u(y)-u(x)|≤1wxyifx∼y作为加权图中沙堆增长的模型。此外,我们还通过 Bénilan (2003) 所给出的抽象结果,分析了当初始条件不属于稳定集 K∞G 或 K∞w 时的崩溃问题。我们从 Monge-Kantorovich 质量输运理论的角度解释了极限问题。最后,我们给出了一些简单例子的显式解,以说明沙堆增长或坍塌的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信