Temporal coupling of plant and microbial nitrogen uptake and plant nitrogen reallocation improve grassland nitrogen retention under nitrogen addition

IF 2.6 3区 环境科学与生态学 Q2 ECOLOGY
Jirui Gong , Biao Wang , Zihe Zhang , Liangyuan Song , Siqi Zhang , Weiyuan Zhang , Jiaojiao Dong , Xuede Dong , Yingying Liu , Yuchun Yan
{"title":"Temporal coupling of plant and microbial nitrogen uptake and plant nitrogen reallocation improve grassland nitrogen retention under nitrogen addition","authors":"Jirui Gong ,&nbsp;Biao Wang ,&nbsp;Zihe Zhang ,&nbsp;Liangyuan Song ,&nbsp;Siqi Zhang ,&nbsp;Weiyuan Zhang ,&nbsp;Jiaojiao Dong ,&nbsp;Xuede Dong ,&nbsp;Yingying Liu ,&nbsp;Yuchun Yan","doi":"10.1016/j.jaridenv.2024.105195","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient nitrogen (N) acquisition by plants and microbes and internal reallocation of plant N are crucial for improving ecosystem N retention. However, little is known about shifts in N use strategy between plants and microbes under N addition. We used a<sup>15</sup>N tracer to investigate effect of N addition (0–25 g N m<sup>−2</sup> yr<sup>−1</sup>) on the N use and retention of plant–microbe–soil system in a temperate Chinese steppe. Adding 2–5 g N m<sup>−2</sup> yr<sup>−1</sup> increased the ecosystem's ability to retain <sup>15</sup>N (65–76%) after 1 year. Plant N demand during the peak growth period depended strongly on rapid N immobilization by microbes during 7 days (immobilized 45% of <sup>15</sup>N within 24 h). When root biomass exceeded 0.36 kg m<sup>−2</sup>, plants competed more strongly for N than the microbes. N addition increased N reallocation from roots to support new shoot growth (79–88% of N), because increased shoot N demand triggered root N transfer when external N was supplied. Thus, the temporal coupling between plant and microbial N use and in N reallocation within plants significantly altered the semi-arid grassland N cycle, and better predicting impacts of future N deposition scenarios.</p></div>","PeriodicalId":51080,"journal":{"name":"Journal of Arid Environments","volume":"224 ","pages":"Article 105195"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Environments","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140196324000752","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient nitrogen (N) acquisition by plants and microbes and internal reallocation of plant N are crucial for improving ecosystem N retention. However, little is known about shifts in N use strategy between plants and microbes under N addition. We used a15N tracer to investigate effect of N addition (0–25 g N m−2 yr−1) on the N use and retention of plant–microbe–soil system in a temperate Chinese steppe. Adding 2–5 g N m−2 yr−1 increased the ecosystem's ability to retain 15N (65–76%) after 1 year. Plant N demand during the peak growth period depended strongly on rapid N immobilization by microbes during 7 days (immobilized 45% of 15N within 24 h). When root biomass exceeded 0.36 kg m−2, plants competed more strongly for N than the microbes. N addition increased N reallocation from roots to support new shoot growth (79–88% of N), because increased shoot N demand triggered root N transfer when external N was supplied. Thus, the temporal coupling between plant and microbial N use and in N reallocation within plants significantly altered the semi-arid grassland N cycle, and better predicting impacts of future N deposition scenarios.

Abstract Image

植物和微生物氮吸收与植物氮再分配的时间耦合改善了氮添加条件下草地的氮保持能力
植物和微生物对氮(N)的高效获取以及植物氮的内部再分配对于提高生态系统的氮保持率至关重要。然而,人们对氮添加情况下植物和微生物之间氮利用策略的转变知之甚少。我们利用 15N 示踪剂研究了氮添加量(0-25 g N m-2 yr-1)对中国温带大草原植物-微生物-土壤系统氮利用和保持的影响。添加 2-5 g N m-2 yr-1 提高了生态系统 1 年后对 15N 的保留能力(65-76%)。植物在生长高峰期对氮的需求在很大程度上取决于微生物在 7 天内对氮的快速固定(24 小时内固定了 45% 的 15N)。当根系生物量超过 0.36 kg m-2 时,植物对氮的竞争比微生物更激烈。氮的添加增加了根系对氮的重新分配,以支持新芽的生长(占氮的 79-88% ),这是因为当外部提供氮时,新芽对氮的需求增加会引发根系对氮的转移。因此,植物和微生物对氮的利用以及植物内部氮的再分配之间的时间耦合极大地改变了半干旱草原的氮循环,并能更好地预测未来氮沉积情景的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Arid Environments
Journal of Arid Environments 环境科学-环境科学
CiteScore
5.70
自引率
3.70%
发文量
144
审稿时长
55 days
期刊介绍: The Journal of Arid Environments is an international journal publishing original scientific and technical research articles on physical, biological and cultural aspects of arid, semi-arid, and desert environments. As a forum of multi-disciplinary and interdisciplinary dialogue it addresses research on all aspects of arid environments and their past, present and future use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信