R.R. Kurnianto , J.M. Hijmans , C. Greve , H. Houdijk
{"title":"Human-in-the-loop optimization of rocker shoe to reduce plantar pressure and collision work simultaneously","authors":"R.R. Kurnianto , J.M. Hijmans , C. Greve , H. Houdijk","doi":"10.1016/j.clinbiomech.2024.106282","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Rocker shoes can be used to reduce foot pressure and adjust lower limb kinetics for various patient population, such as people with diabetic peripheral neuropathy. Selecting adequate properties of the rocker sole is of great importance for its efficacy. This study investigated the capability of human-in-the-loop optimization (HILO) to individually optimize apex position and angle of rocker shoe to reduce peak pressure and collision work simultaneously.</p></div><div><h3>Methods</h3><p>Peak pressure, kinetic, and kinematic data were recorded from 10 healthy participants while walking at preferred speed wearing rocker shoes with adjustable apex position and angle. An evolutionary algorithm was used to find optimal apex parameters to reduce both peak pressure in medial forefoot and collision work. The optimized shoe (HILO shoe) was compared with generic optimal rocker settings (Chapman settings) and normal shoe.</p></div><div><h3>Findings</h3><p>Compared to normal shoe, the HILO shoe had lower plantar pressure (p<sub>HILO</sub> = 0.007; p<sub>Chapman</sub> = 0.044) and Chapman shoe showed higher collision work (p<sub>HILO</sub> = 0.025; p<sub>Chapman</sub> = 0.014). Both HILO and Chapman shoe had smaller push-off work than normal shoe (p<sub>HILO</sub> = 0.001; p<sub>Chapman</sub> < 0.001) with the Chapman shoe exhibited earlier push-off onset (p<sub>HILO</sub> = 0.257; p<sub>Chapman</sub> = 0.016).</p></div><div><h3>Interpretation</h3><p>The Human-in-the-loop optimization approach resulted in individualized apex settings which performed on average similar to Chapman settings but, were superior in selected cases. In these cases, medial forefoot could be further offloaded with apex angles larger than generic settings. The larger apex angle might increase the external ankle moment arm and push-off work. However, there is limited room for improvement on collision work compared to generic settings.</p></div>","PeriodicalId":50992,"journal":{"name":"Clinical Biomechanics","volume":"116 ","pages":"Article 106282"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268003324001141","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Rocker shoes can be used to reduce foot pressure and adjust lower limb kinetics for various patient population, such as people with diabetic peripheral neuropathy. Selecting adequate properties of the rocker sole is of great importance for its efficacy. This study investigated the capability of human-in-the-loop optimization (HILO) to individually optimize apex position and angle of rocker shoe to reduce peak pressure and collision work simultaneously.
Methods
Peak pressure, kinetic, and kinematic data were recorded from 10 healthy participants while walking at preferred speed wearing rocker shoes with adjustable apex position and angle. An evolutionary algorithm was used to find optimal apex parameters to reduce both peak pressure in medial forefoot and collision work. The optimized shoe (HILO shoe) was compared with generic optimal rocker settings (Chapman settings) and normal shoe.
Findings
Compared to normal shoe, the HILO shoe had lower plantar pressure (pHILO = 0.007; pChapman = 0.044) and Chapman shoe showed higher collision work (pHILO = 0.025; pChapman = 0.014). Both HILO and Chapman shoe had smaller push-off work than normal shoe (pHILO = 0.001; pChapman < 0.001) with the Chapman shoe exhibited earlier push-off onset (pHILO = 0.257; pChapman = 0.016).
Interpretation
The Human-in-the-loop optimization approach resulted in individualized apex settings which performed on average similar to Chapman settings but, were superior in selected cases. In these cases, medial forefoot could be further offloaded with apex angles larger than generic settings. The larger apex angle might increase the external ankle moment arm and push-off work. However, there is limited room for improvement on collision work compared to generic settings.
期刊介绍:
Clinical Biomechanics is an international multidisciplinary journal of biomechanics with a focus on medical and clinical applications of new knowledge in the field.
The science of biomechanics helps explain the causes of cell, tissue, organ and body system disorders, and supports clinicians in the diagnosis, prognosis and evaluation of treatment methods and technologies. Clinical Biomechanics aims to strengthen the links between laboratory and clinic by publishing cutting-edge biomechanics research which helps to explain the causes of injury and disease, and which provides evidence contributing to improved clinical management.
A rigorous peer review system is employed and every attempt is made to process and publish top-quality papers promptly.
Clinical Biomechanics explores all facets of body system, organ, tissue and cell biomechanics, with an emphasis on medical and clinical applications of the basic science aspects. The role of basic science is therefore recognized in a medical or clinical context. The readership of the journal closely reflects its multi-disciplinary contents, being a balance of scientists, engineers and clinicians.
The contents are in the form of research papers, brief reports, review papers and correspondence, whilst special interest issues and supplements are published from time to time.
Disciplines covered include biomechanics and mechanobiology at all scales, bioengineering and use of tissue engineering and biomaterials for clinical applications, biophysics, as well as biomechanical aspects of medical robotics, ergonomics, physical and occupational therapeutics and rehabilitation.