Computational tools for cellular scale biophysics

IF 6 2区 生物学 Q1 CELL BIOLOGY
David B. Stein , Michael J. Shelley
{"title":"Computational tools for cellular scale biophysics","authors":"David B. Stein ,&nbsp;Michael J. Shelley","doi":"10.1016/j.ceb.2024.102379","DOIUrl":null,"url":null,"abstract":"<div><p>Mathematical models are indispensable for disentangling the interactions through which biological components work together to generate the forces and flows that position, mix, and distribute proteins, nutrients, and organelles within the cell. To illuminate the ever more specific questions studied at the edge of biological inquiry, such models inevitably become more complex. Solving, simulating, and learning from these more realistic models requires the development of new analytic techniques, numerical methods, and scalable software. In this review, we discuss some recent developments in tools for understanding how large numbers of cytoskeletal filaments, driven by molecular motors and interacting with the cytoplasm and other structures in their environment, generate fluid flows, instabilities, and material deformations which help drive crucial cellular processes.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"89 ","pages":"Article 102379"},"PeriodicalIF":6.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000589","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mathematical models are indispensable for disentangling the interactions through which biological components work together to generate the forces and flows that position, mix, and distribute proteins, nutrients, and organelles within the cell. To illuminate the ever more specific questions studied at the edge of biological inquiry, such models inevitably become more complex. Solving, simulating, and learning from these more realistic models requires the development of new analytic techniques, numerical methods, and scalable software. In this review, we discuss some recent developments in tools for understanding how large numbers of cytoskeletal filaments, driven by molecular motors and interacting with the cytoplasm and other structures in their environment, generate fluid flows, instabilities, and material deformations which help drive crucial cellular processes.

Abstract Image

细胞生物物理学计算工具
数学模型是解开相互作用不可或缺的工具,通过这些相互作用,生物成分共同产生力和流动,使蛋白质、营养物质和细胞器在细胞内定位、混合和分布。为了揭示生物探究边缘所研究的越来越具体的问题,这些模型不可避免地变得更加复杂。要解决、模拟和学习这些更现实的模型,需要开发新的分析技术、数值方法和可扩展软件。在这篇综述中,我们将讨论一些工具的最新发展,这些工具可用于理解大量细胞骨架丝如何在分子马达的驱动下与细胞质及其环境中的其他结构相互作用,产生流体流动、不稳定性和材料变形,从而帮助驱动关键的细胞过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信