{"title":"A multi-faceted methodology for calibration of coastal vegetation drag coefficient","authors":"Erfan Amini , Reza Marsooli , Mehdi Neshat","doi":"10.1016/j.ocemod.2024.102391","DOIUrl":null,"url":null,"abstract":"<div><p>The accurate prediction of wave height attenuation due to vegetation is crucial for designing effective and efficient natural and nature-based solutions for flood mitigation, shoreline protection, and coastal ecosystem preservation. Central to these predictions is the estimation of the vegetation drag coefficient (Cd). The present study undertakes a comprehensive evaluation of three distinct methodologies for estimating the drag coefficient: traditional manual calibration, calibration using a novel application of state-of-the-art metaheuristic optimization algorithms, and the integration of an empirical bulk drag coefficient formula (Tanino and Nepf, 2008) into the XBeach non-hydrostatic wave model. These methodologies were tested using a series of existing laboratory experiments involving nearshore vegetation on a sloping beach. A key innovation of the study is the first application of metaheuristic optimization algorithms for calibrating the drag coefficient, which enables efficient automated searches to identify optimal values aligning with measurements. We found that the optimization algorithms rapidly converge to precise drag coefficients, enhancing accuracy and overcoming limitations in manual calibration which can be laborious and inconsistent. While the integrated empirical formula also demonstrates reasonable performance, the optimization approach exemplifies the potential of computational techniques to transform traditional practices of model calibration. Comparing these strategies provides a framework to determine effective methodology based on constraints in determining the vegetation drag coefficient.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102391"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000787","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate prediction of wave height attenuation due to vegetation is crucial for designing effective and efficient natural and nature-based solutions for flood mitigation, shoreline protection, and coastal ecosystem preservation. Central to these predictions is the estimation of the vegetation drag coefficient (Cd). The present study undertakes a comprehensive evaluation of three distinct methodologies for estimating the drag coefficient: traditional manual calibration, calibration using a novel application of state-of-the-art metaheuristic optimization algorithms, and the integration of an empirical bulk drag coefficient formula (Tanino and Nepf, 2008) into the XBeach non-hydrostatic wave model. These methodologies were tested using a series of existing laboratory experiments involving nearshore vegetation on a sloping beach. A key innovation of the study is the first application of metaheuristic optimization algorithms for calibrating the drag coefficient, which enables efficient automated searches to identify optimal values aligning with measurements. We found that the optimization algorithms rapidly converge to precise drag coefficients, enhancing accuracy and overcoming limitations in manual calibration which can be laborious and inconsistent. While the integrated empirical formula also demonstrates reasonable performance, the optimization approach exemplifies the potential of computational techniques to transform traditional practices of model calibration. Comparing these strategies provides a framework to determine effective methodology based on constraints in determining the vegetation drag coefficient.
期刊介绍:
The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.