{"title":"Fluid jet access in topology optimization for cleanable parts","authors":"Reinier Giele, Can Ayas, Matthijs Langelaar","doi":"10.1016/j.compstruc.2024.107420","DOIUrl":null,"url":null,"abstract":"<div><p>Topology optimization methods are used to design high performance structural components that often have complex geometric layouts. In several industries, components are required to be cleanable, and for this research cleaning by jetting is considered. Thus, being able to ensure jet access on the entire surface of a structure is of interest in topology optimization. In this paper, a jetting filter is proposed, that turns a blueprint design into a jet accessible design. Two methods are considered to find an access field for each jet. These individual jet access fields are then combined into a total access field, to obtain a cleanable design. Consistent sensitivity analysis is used and the additional computational cost of the jetting filter is modest compared to the finite element analysis. The performance of the two methods is demonstrated with 2D and 3D numerical examples for mechanical and thermal topology optimization problems.</p></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794924001494","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Topology optimization methods are used to design high performance structural components that often have complex geometric layouts. In several industries, components are required to be cleanable, and for this research cleaning by jetting is considered. Thus, being able to ensure jet access on the entire surface of a structure is of interest in topology optimization. In this paper, a jetting filter is proposed, that turns a blueprint design into a jet accessible design. Two methods are considered to find an access field for each jet. These individual jet access fields are then combined into a total access field, to obtain a cleanable design. Consistent sensitivity analysis is used and the additional computational cost of the jetting filter is modest compared to the finite element analysis. The performance of the two methods is demonstrated with 2D and 3D numerical examples for mechanical and thermal topology optimization problems.
期刊介绍:
Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.