Nontrivial solutions to affine p-Laplace equations via a perturbation strategy

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Edir Júnior Ferreira Leite , Marcos Montenegro
{"title":"Nontrivial solutions to affine p-Laplace equations via a perturbation strategy","authors":"Edir Júnior Ferreira Leite ,&nbsp;Marcos Montenegro","doi":"10.1016/j.nonrwa.2024.104154","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is concerned with the existence of nontrivial solutions for affine <span><math><mi>p</mi></math></span>-Laplace equations involving subcritical nonlinearities behaving at <span><math><mrow><mi>u</mi><mo>=</mo><mn>0</mn></mrow></math></span> as <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>q</mi></mrow></msup></math></span> with <span><math><mrow><mi>q</mi><mo>&lt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></math></span> and at the infinity as <span><math><msup><mrow><mi>u</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> with <span><math><mrow><mi>r</mi><mo>&gt;</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></math></span>. Since local Palais–Smale compactness for affine energy type functionals is an open hard question, the problem is overcome by means of a perturbative approach using the space norm. Mountain-pass critical points are constructed from a limit process of corresponding ones in the modified affine context. Compactness and stability of MP solution sets are also addressed.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824000944","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the existence of nontrivial solutions for affine p-Laplace equations involving subcritical nonlinearities behaving at u=0 as uq with q<p1 and at the infinity as ur with r>p1. Since local Palais–Smale compactness for affine energy type functionals is an open hard question, the problem is overcome by means of a perturbative approach using the space norm. Mountain-pass critical points are constructed from a limit process of corresponding ones in the modified affine context. Compactness and stability of MP solution sets are also addressed.

通过扰动策略实现仿射 p 拉普拉斯方程的非微观解
本文关注的是仿射 p-Laplace 方程的非微观解的存在性问题,该方程涉及亚临界非线性,在 u=0 时表现为 uq(含 q<p-1),在无穷远处表现为 ur(含 r>p-1)。由于仿射能量型函数的局部 Palais-Smale compactness 是一个未解决的难题,因此通过使用空间规范的扰动方法来解决这个问题。根据修正仿射背景下相应临界点的极限过程,构建了穿山临界点。同时还解决了 MP 解集的紧凑性和稳定性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信