Anna Lanka , Inta Dimante-Deimantovica , Saija Saarni , Normunds Stivrins , Wojciech Tylmann , Izabela Zawiska , Siim Veski
{"title":"Urbanization-driven Cladocera community shifts in the lake - a case study from Baltic region, Europe","authors":"Anna Lanka , Inta Dimante-Deimantovica , Saija Saarni , Normunds Stivrins , Wojciech Tylmann , Izabela Zawiska , Siim Veski","doi":"10.1016/j.ancene.2024.100439","DOIUrl":null,"url":null,"abstract":"<div><p>Our research aimed to evaluate, how urbanization affects lake ecosystems and Cladocera in particular. For this purpose, we chose a small urban lake with a well-documented history. Lake Velnezers (located in Riga, Latvia) is currently surrounded by apartment building complexes. Construction works around this lake started in the 1950s and continued up until the 1970s. To investigate how the transition from forested to agricultural and further urbanized land affected the lake ecosystem we took a sediment core that covers the time period from before 1875–2018. We evaluated ecological changes in the lake based on chemical and Cladocera species composition in sediment records and linked these changes to the historical information about alterations in the landscape around Velnezers. Our results show lake transitioned from oligotrophic to eutrophic conditions already before urbanization. The Lake ecosystem reacted to urbanization gradually, showing small changes in the beginning. However, in the 1980s lake experienced rapid deterioration in water quality – sediment records show an increase in heavy metal pollution, anoxia, and nutrient input. These stressors resulted in Cladocera functional group structure changes and loss of Cladocera species richness and diversity. Improvements in nature protection – such as wastewater management have reduced heavy metal and nutrient input into Lake Velnezers towards the present. However, previous deterioration, i.e. loss of species diversity and phosphorous legacy effect do not allow natural lake recovery under current conditions.</p></div>","PeriodicalId":56021,"journal":{"name":"Anthropocene","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221330542400016X/pdfft?md5=2c456f9bbb4e7c474edb806f98254669&pid=1-s2.0-S221330542400016X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221330542400016X","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Our research aimed to evaluate, how urbanization affects lake ecosystems and Cladocera in particular. For this purpose, we chose a small urban lake with a well-documented history. Lake Velnezers (located in Riga, Latvia) is currently surrounded by apartment building complexes. Construction works around this lake started in the 1950s and continued up until the 1970s. To investigate how the transition from forested to agricultural and further urbanized land affected the lake ecosystem we took a sediment core that covers the time period from before 1875–2018. We evaluated ecological changes in the lake based on chemical and Cladocera species composition in sediment records and linked these changes to the historical information about alterations in the landscape around Velnezers. Our results show lake transitioned from oligotrophic to eutrophic conditions already before urbanization. The Lake ecosystem reacted to urbanization gradually, showing small changes in the beginning. However, in the 1980s lake experienced rapid deterioration in water quality – sediment records show an increase in heavy metal pollution, anoxia, and nutrient input. These stressors resulted in Cladocera functional group structure changes and loss of Cladocera species richness and diversity. Improvements in nature protection – such as wastewater management have reduced heavy metal and nutrient input into Lake Velnezers towards the present. However, previous deterioration, i.e. loss of species diversity and phosphorous legacy effect do not allow natural lake recovery under current conditions.
AnthropoceneEarth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.30
自引率
0.00%
发文量
27
审稿时长
102 days
期刊介绍:
Anthropocene is an interdisciplinary journal that publishes peer-reviewed works addressing the nature, scale, and extent of interactions that people have with Earth processes and systems. The scope of the journal includes the significance of human activities in altering Earth’s landscapes, oceans, the atmosphere, cryosphere, and ecosystems over a range of time and space scales - from global phenomena over geologic eras to single isolated events - including the linkages, couplings, and feedbacks among physical, chemical, and biological components of Earth systems. The journal also addresses how such alterations can have profound effects on, and implications for, human society. As the scale and pace of human interactions with Earth systems have intensified in recent decades, understanding human-induced alterations in the past and present is critical to our ability to anticipate, mitigate, and adapt to changes in the future. The journal aims to provide a venue to focus research findings, discussions, and debates toward advancing predictive understanding of human interactions with Earth systems - one of the grand challenges of our time.