{"title":"Economic impacts of power-to-liquid fuels in aviation: A general equilibrium analysis of production and utilization in Germany","authors":"Tobias Mueller , Etti Winter , Ulrike Grote","doi":"10.1016/j.ecmx.2024.100632","DOIUrl":null,"url":null,"abstract":"<div><p>The aviation industry faces an urgent need to adopt sustainable aviation fuels for significant decarbonization. Power-to-Liquid (PtL) fuel is considered a potential game changer, but questions remain about the wider economic impacts of introducing PtL fuel in the aviation sector. This paper examines the economic impacts of introducing PtL fuel blending quotas along with a price policy consisting of a kerosene tax and PtL fuel subsidies for the case of Germany. Based on a detailed supply chain analysis, we apply a social accounting matrix and a computable general equilibrium model to take into account both, the production and utilization perspectives of PtL jet fuel. Our results show that the influence of low blending quotas is mainly limited to the aviation sector, with a 10 % blending quota increasing consumer prices by 7.9 % and reducing aviation industry output by 3.1 %. When quota levels increase, however, the effects go beyond the air transport system. On inter-sectoral level, we identify three main patterns: First, industries that substantially contribute to the PtL fuel supply chain, such as metal products and electrical equipment, see increasing levels in both, domestic production, and imports. Second, aviation upstream industries like transport infrastructure and aircraft production see reduced domestic production and imports. Third, aviation downstream industries, such as delivery services and travel agencies, see substitution effects, where imports partly replace domestic output. Macroeconomic indicators are affected negatively by the quota scenarios, but the relative impact is low as the maximum decrease in the gross domestic product (GDP) does not exceed 0.35 %. PtL fuel production subsidies can largely mitigate the decrease in aviation demand but come at the cost of a stronger reduction in the GDP and government income. Moreover, the sensitivity analysis emphasizes that various assumptions and parameters, such as the cost projections of PtL fuel, import options, and elasticities of demand, affect the intensity of economic consequences. Our analysis implies the trade-offs of policymaking between sectoral and macroeconomic interests in the context of sustainable fuels. The main contribution of this study is the investigation of the broader economic effects resulting from the adoption of PtL fuels in aviation. In particular, the production as well as the utilization perspective are considered simultaneously in this study.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001107/pdfft?md5=dc3257a9e1895ad65d0af550a7cec76b&pid=1-s2.0-S2590174524001107-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The aviation industry faces an urgent need to adopt sustainable aviation fuels for significant decarbonization. Power-to-Liquid (PtL) fuel is considered a potential game changer, but questions remain about the wider economic impacts of introducing PtL fuel in the aviation sector. This paper examines the economic impacts of introducing PtL fuel blending quotas along with a price policy consisting of a kerosene tax and PtL fuel subsidies for the case of Germany. Based on a detailed supply chain analysis, we apply a social accounting matrix and a computable general equilibrium model to take into account both, the production and utilization perspectives of PtL jet fuel. Our results show that the influence of low blending quotas is mainly limited to the aviation sector, with a 10 % blending quota increasing consumer prices by 7.9 % and reducing aviation industry output by 3.1 %. When quota levels increase, however, the effects go beyond the air transport system. On inter-sectoral level, we identify three main patterns: First, industries that substantially contribute to the PtL fuel supply chain, such as metal products and electrical equipment, see increasing levels in both, domestic production, and imports. Second, aviation upstream industries like transport infrastructure and aircraft production see reduced domestic production and imports. Third, aviation downstream industries, such as delivery services and travel agencies, see substitution effects, where imports partly replace domestic output. Macroeconomic indicators are affected negatively by the quota scenarios, but the relative impact is low as the maximum decrease in the gross domestic product (GDP) does not exceed 0.35 %. PtL fuel production subsidies can largely mitigate the decrease in aviation demand but come at the cost of a stronger reduction in the GDP and government income. Moreover, the sensitivity analysis emphasizes that various assumptions and parameters, such as the cost projections of PtL fuel, import options, and elasticities of demand, affect the intensity of economic consequences. Our analysis implies the trade-offs of policymaking between sectoral and macroeconomic interests in the context of sustainable fuels. The main contribution of this study is the investigation of the broader economic effects resulting from the adoption of PtL fuels in aviation. In particular, the production as well as the utilization perspective are considered simultaneously in this study.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.