A hierarchical Bayesian logit model for spatial multivariate choice data

IF 2.8 3区 经济学 Q1 ECONOMICS
Yuki Oyama , Daisuke Murakami , Rico Krueger
{"title":"A hierarchical Bayesian logit model for spatial multivariate choice data","authors":"Yuki Oyama ,&nbsp;Daisuke Murakami ,&nbsp;Rico Krueger","doi":"10.1016/j.jocm.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>Spatial perceptions mediate human–environment interaction, and understanding spatial perceptions of humans can play a key role in the planning of activities. This study aims to analyze spatial multivariate binary choice data representing if an individual perceives a spatial unit to belong to a certain category (<em>e.g.</em>, her neighborhood or set of potential activity places). To reasonably analyze such data, we present a spatial autoregressive mixed logit (SAR-MXL) model that accounts for both inter-individual heterogeneity and spatial dependence. We rely on the Bayesian approach for posterior inference of model parameters, where Pólya-Gamma data augmentation (PG-DA) is adopted to address the non-conjugacy of the logit kernel. The PG-DA technique eliminates the need for the Metropolis–Hastings step during the Markov Chain Monte Carlo process and allows for fast and efficient posterior inference. The high efficiency of the Bayesian SAR-MXL model is demonstrated through a numerical experiment. The proposed framework is applied to street-based neighborhood perception data, and we empirically analyzed the factors associated with the street perception probability of individuals. The result suggests a clear improvement of the model fit by incorporating spatial dependence and random parameters.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"52 ","pages":"Article 100503"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755534524000356/pdfft?md5=9f9d9bc0d37a8a1083ea705dbc2dc28b&pid=1-s2.0-S1755534524000356-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534524000356","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial perceptions mediate human–environment interaction, and understanding spatial perceptions of humans can play a key role in the planning of activities. This study aims to analyze spatial multivariate binary choice data representing if an individual perceives a spatial unit to belong to a certain category (e.g., her neighborhood or set of potential activity places). To reasonably analyze such data, we present a spatial autoregressive mixed logit (SAR-MXL) model that accounts for both inter-individual heterogeneity and spatial dependence. We rely on the Bayesian approach for posterior inference of model parameters, where Pólya-Gamma data augmentation (PG-DA) is adopted to address the non-conjugacy of the logit kernel. The PG-DA technique eliminates the need for the Metropolis–Hastings step during the Markov Chain Monte Carlo process and allows for fast and efficient posterior inference. The high efficiency of the Bayesian SAR-MXL model is demonstrated through a numerical experiment. The proposed framework is applied to street-based neighborhood perception data, and we empirically analyzed the factors associated with the street perception probability of individuals. The result suggests a clear improvement of the model fit by incorporating spatial dependence and random parameters.

空间多变量选择数据的分层贝叶斯逻辑模型
空间感知是人与环境互动的中介,了解人类的空间感知对活动规划起着关键作用。本研究旨在分析空间多变量二元选择数据,这些数据表示个人是否认为某个空间单位属于某个类别(例如,她的邻里或潜在活动场所集)。为了合理分析此类数据,我们提出了一个空间自回归混合对数(SAR-MXL)模型,该模型同时考虑了个体间的异质性和空间依赖性。我们依靠贝叶斯方法对模型参数进行后验推断,其中采用了 Pólya-Gamma 数据增强(PG-DA)来解决对数核的非共轭性问题。PG-DA 技术省去了马尔可夫链蒙特卡罗过程中的 Metropolis-Hastings 步骤,实现了快速高效的后验推断。通过数值实验证明了贝叶斯 SAR-MXL 模型的高效性。我们将所提出的框架应用于基于街道的邻里感知数据,并对与个人街道感知概率相关的因素进行了实证分析。结果表明,加入空间依赖性和随机参数后,模型的拟合效果明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信