Real-Time Motor Unit Tracking From sEMG Signals With Adaptive ICA on a Parallel Ultra-Low Power Processor

Mattia Orlandi;Pierangelo Maria Rapa;Marcello Zanghieri;Sebastian Frey;Victor Kartsch;Luca Benini;Simone Benatti
{"title":"Real-Time Motor Unit Tracking From sEMG Signals With Adaptive ICA on a Parallel Ultra-Low Power Processor","authors":"Mattia Orlandi;Pierangelo Maria Rapa;Marcello Zanghieri;Sebastian Frey;Victor Kartsch;Luca Benini;Simone Benatti","doi":"10.1109/TBCAS.2024.3410840","DOIUrl":null,"url":null,"abstract":"Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 14.91% and macro-F1 score of 85.86 \n<inline-formula><tex-math>$\\pm$</tex-math></inline-formula>\n 14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"771-782"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552147/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spike extraction by blind source separation (BSS) algorithms can successfully extract physiologically meaningful information from the sEMG signal, as they are able to identify motor unit (MU) discharges involved in muscle contractions. However, BSS approaches are currently restricted to isometric contractions, limiting their applicability in real-world scenarios. We present a strategy to track MUs across different dynamic hand gestures using adaptive independent component analysis (ICA): first, a pool of MUs is identified during isometric contractions, and the decomposition parameters are stored; during dynamic gestures, the decomposition parameters are updated online in an unsupervised fashion, yielding the refined MUs; then, a Pan-Tompkins-inspired algorithm detects the spikes in each MUs; finally, the identified spikes are fed to a classifier to recognize the gesture. We validate our approach on a 4-subject, 7-gesture + rest dataset collected with our custom 16-channel dry sEMG armband, achieving an average balanced accuracy of 85.58  $\pm$  14.91% and macro-F1 score of 85.86  $\pm$  14.48%. We deploy our solution onto GAP9, a parallel ultra-low-power microcontroller specialized for computation-intensive linear algebra applications at the edge, obtaining an energy consumption of 4.72 mJ @ 240 MHz and a latency of 121.3 ms for each 200 ms-long window of sEMG signal.
利用并行超低功耗处理器上的自适应 ICA,从 sEMG 信号中实时跟踪电机单元。
通过盲源分离(BSS)算法提取尖峰,可以成功地从 sEMG 信号中提取出有生理意义的信息,因为它们能够识别肌肉收缩中的运动单元(MU)放电。然而,BSS 方法目前仅限于等长收缩,限制了其在现实世界中的应用。我们提出了一种利用自适应独立分量分析(ICA)在不同动态手势中跟踪运动单元的策略:首先,在等长收缩过程中识别运动单元池,并存储分解参数;在动态手势过程中,以无监督方式在线更新分解参数,从而得到细化的运动单元;然后,受 Pan-Tompkins 启发的算法检测每个运动单元中的尖峰;最后,将识别出的尖峰输入分类器以识别手势。我们在使用定制的 16 通道干式 sEMG 臂带收集的 4 个受试者、7 种手势 + 休息数据集上验证了我们的方法,取得了平均 85.58±14.91% 的平衡准确率和 85.86±14.48% 的宏 F1 分数。我们在 GAP9 上部署了我们的解决方案,GAP9 是一种并行超低功耗微控制器,专门用于边缘计算密集型线性代数应用,在 240 MHz 频率下能耗为 4.72 mJ,每个 200 毫秒长的 sEMG 信号窗口的延迟时间为 121.3 毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信