Association between serum neuron-specific enolase at admission and the risk of delayed neuropsychiatric sequelae in adults with carbon monoxide poisoning: A meta-analysis.
Yu Zhang, Nan Gao, Yingbo Wang, Wenxin Hu, Zhihao Wang, Li Pang
{"title":"Association between serum neuron-specific enolase at admission and the risk of delayed neuropsychiatric sequelae in adults with carbon monoxide poisoning: A meta-analysis.","authors":"Yu Zhang, Nan Gao, Yingbo Wang, Wenxin Hu, Zhihao Wang, Li Pang","doi":"10.17305/bb.2024.10757","DOIUrl":null,"url":null,"abstract":"<p><p>Delayed neuropsychiatric sequelae (DNS) significantly impact the quality of life in patients following acute carbon monoxide poisoning (COP). This systematic review and meta-analysis aimed to assess the relationship between serum neuron-specific enolase (NSE) levels at admission and the risk of DNS in adults after acute COP. Relevant observational studies with longitudinal follow-up were identified through searches in PubMed, Embase, Web of Science, Wanfang, and China National Knowledge Infrastructure databases. The random-effects model was used to aggregate results, accounting for potential heterogeneity. Nine cohort studies, including 1501 patients, were analyzed, with 254 (16.9%) developing DNS during follow-up. The pooled data indicated that elevated serum NSE in the early phase was linked to a higher risk of subsequent DNS (odds ratio per 1 ng/mL increase in NSE: 1.10, 95% confidence interval: 1.06 to 1.15, P < 0.001). Moderate heterogeneity (I2 = 46%) among the studies was entirely attributed to one study with the longest follow-up duration (22.3 months; I2 = 0% after excluding this study). Subgroup analyses based on country, study design, sample size, age, sex, admission carboxyhemoglobin levels, DNS incidence, follow-up duration, and quality score yielded consistent results (P for subgroup differences all > 0.05). In summary, high serum NSE levels in the early phase of acute COP are associated with an increased risk of developing DNS during follow-up.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":"1482-1490"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496868/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.10757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Delayed neuropsychiatric sequelae (DNS) significantly impact the quality of life in patients following acute carbon monoxide poisoning (COP). This systematic review and meta-analysis aimed to assess the relationship between serum neuron-specific enolase (NSE) levels at admission and the risk of DNS in adults after acute COP. Relevant observational studies with longitudinal follow-up were identified through searches in PubMed, Embase, Web of Science, Wanfang, and China National Knowledge Infrastructure databases. The random-effects model was used to aggregate results, accounting for potential heterogeneity. Nine cohort studies, including 1501 patients, were analyzed, with 254 (16.9%) developing DNS during follow-up. The pooled data indicated that elevated serum NSE in the early phase was linked to a higher risk of subsequent DNS (odds ratio per 1 ng/mL increase in NSE: 1.10, 95% confidence interval: 1.06 to 1.15, P < 0.001). Moderate heterogeneity (I2 = 46%) among the studies was entirely attributed to one study with the longest follow-up duration (22.3 months; I2 = 0% after excluding this study). Subgroup analyses based on country, study design, sample size, age, sex, admission carboxyhemoglobin levels, DNS incidence, follow-up duration, and quality score yielded consistent results (P for subgroup differences all > 0.05). In summary, high serum NSE levels in the early phase of acute COP are associated with an increased risk of developing DNS during follow-up.