A bed allocation model for pandemic situation considering general demand: A case study of Iran.

IF 3 3区 医学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Risk Analysis Pub Date : 2024-11-01 Epub Date: 2024-06-07 DOI:10.1111/risa.14339
Mohammadreza Korzebor, Nasim Nahavandi
{"title":"A bed allocation model for pandemic situation considering general demand: A case study of Iran.","authors":"Mohammadreza Korzebor, Nasim Nahavandi","doi":"10.1111/risa.14339","DOIUrl":null,"url":null,"abstract":"<p><p>Pandemics place a new type of demand from patients affected by the pandemic, imposing significant strain on hospital departments, particularly the intensive care unit. A crucial challenge during pandemics is the imbalance in addressing the needs of both pandemic patients and general patients. Often, the community's focus shifts toward the pandemic patients, causing an imbalance that can result in severe issues. Simultaneously considering both demands, pandemic-related and general healthcare needs, has been largely overlooked. In this article, we propose a bi-objective mathematical model for locating temporary hospitals and allocating patients to existing and temporary hospitals, considering both demand types during pandemics. Hospital departments, such as emergency beds, serve both demand types, but due to infection risks, accommodating a pandemic patient and a general patient in the same department is not feasible. The first objective function is to minimize the bed shortages considering both types of demands, whereas the second objective is cost minimization, which includes the fixed and variable costs of temporary facilities, the penalty cost of changing the allocation of existing facilities (between general and pandemic demand), the cost of adding expandable beds to existing facilities, and the service cost for different services and beds. To show the applicability of the model, a real case study has been conducted on the COVID-19 pandemic in the city of Qom, Iran. Comparing the model results with real data reveals that using the proposed model can increase demand coverage by 16%.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.14339","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Pandemics place a new type of demand from patients affected by the pandemic, imposing significant strain on hospital departments, particularly the intensive care unit. A crucial challenge during pandemics is the imbalance in addressing the needs of both pandemic patients and general patients. Often, the community's focus shifts toward the pandemic patients, causing an imbalance that can result in severe issues. Simultaneously considering both demands, pandemic-related and general healthcare needs, has been largely overlooked. In this article, we propose a bi-objective mathematical model for locating temporary hospitals and allocating patients to existing and temporary hospitals, considering both demand types during pandemics. Hospital departments, such as emergency beds, serve both demand types, but due to infection risks, accommodating a pandemic patient and a general patient in the same department is not feasible. The first objective function is to minimize the bed shortages considering both types of demands, whereas the second objective is cost minimization, which includes the fixed and variable costs of temporary facilities, the penalty cost of changing the allocation of existing facilities (between general and pandemic demand), the cost of adding expandable beds to existing facilities, and the service cost for different services and beds. To show the applicability of the model, a real case study has been conducted on the COVID-19 pandemic in the city of Qom, Iran. Comparing the model results with real data reveals that using the proposed model can increase demand coverage by 16%.

考虑一般需求的大流行病床位分配模型:伊朗案例研究。
大流行病对受流行病影响的病人提出了新的需求,给医院各部门,特别是重症监护室带来了巨大压力。大流行期间的一个关键挑战是在满足大流行病患者和普通患者的需求方面存在失衡。通常情况下,社会关注的焦点会转向大流行病患者,从而造成失衡,引发严重问题。同时考虑与大流行病相关的需求和普通医疗需求在很大程度上被忽视了。在本文中,我们提出了一个双目标数学模型,用于确定临时医院的位置,并将病人分配到现有医院和临时医院,同时考虑大流行病期间的两种需求类型。急诊病床等医院科室同时满足两种需求,但由于感染风险,在同一科室收治大流行病患者和普通患者是不可行的。第一个目标函数是在考虑两种需求类型的情况下尽量减少病床短缺,而第二个目标是成本最小化,其中包括临时设施的固定成本和可变成本、改变现有设施分配(在普通需求和大流行病需求之间)的惩罚成本、在现有设施上增加可扩展病床的成本以及不同服务和病床的服务成本。为了证明该模型的适用性,我们对伊朗库姆市 COVID-19 大流行病进行了实际案例研究。将模型结果与真实数据进行比较后发现,使用建议的模型可将需求覆盖率提高 16%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Risk Analysis
Risk Analysis 数学-数学跨学科应用
CiteScore
7.50
自引率
10.50%
发文量
183
审稿时长
4.2 months
期刊介绍: Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include: • Human health and safety risks • Microbial risks • Engineering • Mathematical modeling • Risk characterization • Risk communication • Risk management and decision-making • Risk perception, acceptability, and ethics • Laws and regulatory policy • Ecological risks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信