Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination

IF 8.7 1区 生物学 Q1 CELL BIOLOGY
Jie Yao, Qinjie Chu, Xing Guo, Wenwen Shao, Nianmin Shang, Kang Luo, Xiaohan Li, Hongyu Chen, Qing Cheng, Fangyu Mo, Dihuai Zheng, Fan Xu, Fu Guo, Qian-Hao Zhu, Shuiguang Deng, Chengcai Chu, Xun Xu, Huan Liu, Longjiang Fan
{"title":"Spatiotemporal transcriptomic landscape of rice embryonic cells during seed germination","authors":"Jie Yao, Qinjie Chu, Xing Guo, Wenwen Shao, Nianmin Shang, Kang Luo, Xiaohan Li, Hongyu Chen, Qing Cheng, Fangyu Mo, Dihuai Zheng, Fan Xu, Fu Guo, Qian-Hao Zhu, Shuiguang Deng, Chengcai Chu, Xun Xu, Huan Liu, Longjiang Fan","doi":"10.1016/j.devcel.2024.05.016","DOIUrl":null,"url":null,"abstract":"<p>Characterizing cellular features during seed germination is crucial for understanding the complex biological functions of different embryonic cells in regulating seed vigor and seedling establishment. We performed spatially enhanced resolution omics sequencing (Stereo-seq) and single-cell RNA sequencing (scRNA-seq) to capture spatially resolved single-cell transcriptomes of germinating rice embryos. An automated cell-segmentation model, employing deep learning, was developed to accommodate the analysis requirements. The spatial transcriptomes of 6, 24, 36, and 48 h after imbibition unveiled both known and previously unreported embryo cell types, including two unreported scutellum cell types, corroborated by <em>in situ</em> hybridization and functional exploration of marker genes. Temporal transcriptomic profiling delineated gene expression dynamics in distinct embryonic cell types during seed germination, highlighting key genes involved in nutrient metabolism, biosynthesis, and signaling of phytohormones, reprogrammed in a cell-type-specific manner. Our study provides a detailed spatiotemporal transcriptome of rice embryo and presents a previously undescribed methodology for exploring the roles of different embryonic cells in seed germination.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"32 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.05.016","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing cellular features during seed germination is crucial for understanding the complex biological functions of different embryonic cells in regulating seed vigor and seedling establishment. We performed spatially enhanced resolution omics sequencing (Stereo-seq) and single-cell RNA sequencing (scRNA-seq) to capture spatially resolved single-cell transcriptomes of germinating rice embryos. An automated cell-segmentation model, employing deep learning, was developed to accommodate the analysis requirements. The spatial transcriptomes of 6, 24, 36, and 48 h after imbibition unveiled both known and previously unreported embryo cell types, including two unreported scutellum cell types, corroborated by in situ hybridization and functional exploration of marker genes. Temporal transcriptomic profiling delineated gene expression dynamics in distinct embryonic cell types during seed germination, highlighting key genes involved in nutrient metabolism, biosynthesis, and signaling of phytohormones, reprogrammed in a cell-type-specific manner. Our study provides a detailed spatiotemporal transcriptome of rice embryo and presents a previously undescribed methodology for exploring the roles of different embryonic cells in seed germination.

Abstract Image

种子萌发过程中水稻胚胎细胞的时空转录组图谱
描述种子萌发过程中的细胞特征对于了解不同胚胎细胞在调控种子活力和成苗过程中的复杂生物学功能至关重要。我们进行了空间分辨率增强的全息测序(Stereo-seq)和单细胞 RNA 测序(scRNA-seq),以捕获发芽水稻胚胎的空间分辨率单细胞转录组。为了满足分析要求,我们开发了一种采用深度学习的自动细胞分割模型。发芽后 6、24、36 和 48 小时的空间转录组揭示了已知和以前未报道的胚细胞类型,包括两种未报道的鳞片细胞类型,原位杂交和标记基因的功能探索证实了这一点。时序转录组图谱描绘了种子萌发过程中不同胚细胞类型的基因表达动态,突出了参与营养代谢、生物合成和植物激素信号转导的关键基因,这些基因以细胞类型特异的方式进行了重编程。我们的研究提供了详细的水稻胚胎时空转录组,并提出了一种以前未曾描述过的方法来探索不同胚胎细胞在种子萌发中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信