Anna Piwoni-Piórewicz, Lee Hsiang Liow, Małgorzata Krzemińska, Maciej Chełchowski, Anna Iglikowska, Fabrizia Ronco, Mikołaj Mazurkiewicz, Abigail M. Smith, Dennis P. Gordon, Andrea Waeschenbach, Jens Najorka, Blanca Figuerola, Melissa K. Boonzaaier-Davids, Katerina Achilleos, Hannah Mello, Wayne K. Florence, Leandro M. Vieira, Andrew N. Ostrovsky, Natalia Shunatova, Joanne S. Porter, Noga Sokolover, Robyn L. Cumming, Maja Novosel, Aaron O'Dea, Chiara Lombardi, Sudhanshi S. Jain, Danwei Huang, Piotr Kukliński
{"title":"Skeletal mineralogy of marine calcifying organisms shaped by seawater temperature and evolutionary history—A case study of cheilostome bryozoans","authors":"Anna Piwoni-Piórewicz, Lee Hsiang Liow, Małgorzata Krzemińska, Maciej Chełchowski, Anna Iglikowska, Fabrizia Ronco, Mikołaj Mazurkiewicz, Abigail M. Smith, Dennis P. Gordon, Andrea Waeschenbach, Jens Najorka, Blanca Figuerola, Melissa K. Boonzaaier-Davids, Katerina Achilleos, Hannah Mello, Wayne K. Florence, Leandro M. Vieira, Andrew N. Ostrovsky, Natalia Shunatova, Joanne S. Porter, Noga Sokolover, Robyn L. Cumming, Maja Novosel, Aaron O'Dea, Chiara Lombardi, Sudhanshi S. Jain, Danwei Huang, Piotr Kukliński","doi":"10.1111/geb.13874","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Quantify the contribution of environmental factors (water temperature, salinity and depth) and evolutionary history to varied skeletal mineralogy in calcifying marine organisms.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Global Ocean.</p>\n </section>\n \n <section>\n \n <h3> Time period</h3>\n \n <p>Present.</p>\n </section>\n \n <section>\n \n <h3> Major taxa studied</h3>\n \n <p>Order: Cheilostomatida; Phylum: Bryozoa.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We employed X-ray diffraction (XRD) to analyse the skeletal mineral composition of 872 individual colonies, representing 437 bryozoan species, in terms of calcite/aragonite ratios. We integrated these data with equivalent published data, thus reaching 981 species, and applied linear models (LMs), generalized linear models (GLMs) and phylogenetic generalized least squares models (PGLSs) to investigate the influences of temperature, salinity, depth and phylogenetic history on the mineralogy of nearly 1000 cheilostome bryozoan species.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Cheilostome bryozoans vary considerably in their skeletal mineral composition: in our dataset 65% of the species possess purely calcite skeletons, 15% exclusively employ aragonite and 20% exhibit mixed (i.e. calcite and aragonite) mineralogies. Temperature is the predominant measured environmental factor influencing bryozoan skeletal mineralogy, accounting for 20% of its variability across species, when phylogenetic relatedness is unaccounted for. Bryozoans in lower latitudes, characterized by higher seawater temperatures, have higher aragonite concentrations. By accounting for phylogenetic structure using a subset of 87 species for which we have topological information, 40% of the observed mineralogical variability could be attributed to present-day temperature. In contrast, depth and salinity played minor roles, explaining less than 1% of the mineralogical variation each.</p>\n </section>\n \n <section>\n \n <h3> Main conclusions</h3>\n \n <p>This study emphasizes the influence of evolutionary history on the mineralogical variability of calcifying organisms, even when it can be shown that a single environmental factor (temperature) explains a substantial amount of this variability. When confronted with changing temperature, calcifiers such as bryozoans are likely to respond in diverse ways, depending on the species, given their phylogenetic relatedness and the external conditions they meet.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 8","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13874","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13874","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim
Quantify the contribution of environmental factors (water temperature, salinity and depth) and evolutionary history to varied skeletal mineralogy in calcifying marine organisms.
Location
Global Ocean.
Time period
Present.
Major taxa studied
Order: Cheilostomatida; Phylum: Bryozoa.
Methods
We employed X-ray diffraction (XRD) to analyse the skeletal mineral composition of 872 individual colonies, representing 437 bryozoan species, in terms of calcite/aragonite ratios. We integrated these data with equivalent published data, thus reaching 981 species, and applied linear models (LMs), generalized linear models (GLMs) and phylogenetic generalized least squares models (PGLSs) to investigate the influences of temperature, salinity, depth and phylogenetic history on the mineralogy of nearly 1000 cheilostome bryozoan species.
Results
Cheilostome bryozoans vary considerably in their skeletal mineral composition: in our dataset 65% of the species possess purely calcite skeletons, 15% exclusively employ aragonite and 20% exhibit mixed (i.e. calcite and aragonite) mineralogies. Temperature is the predominant measured environmental factor influencing bryozoan skeletal mineralogy, accounting for 20% of its variability across species, when phylogenetic relatedness is unaccounted for. Bryozoans in lower latitudes, characterized by higher seawater temperatures, have higher aragonite concentrations. By accounting for phylogenetic structure using a subset of 87 species for which we have topological information, 40% of the observed mineralogical variability could be attributed to present-day temperature. In contrast, depth and salinity played minor roles, explaining less than 1% of the mineralogical variation each.
Main conclusions
This study emphasizes the influence of evolutionary history on the mineralogical variability of calcifying organisms, even when it can be shown that a single environmental factor (temperature) explains a substantial amount of this variability. When confronted with changing temperature, calcifiers such as bryozoans are likely to respond in diverse ways, depending on the species, given their phylogenetic relatedness and the external conditions they meet.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.