Caiwu Liang, Reshma R. Rao, Katrine L. Svane, Joseph H. L. Hadden, Benjamin Moss, Soren B. Scott, Michael Sachs, James Murawski, Adrian Malthe Frandsen, D. Jason Riley, Mary P. Ryan, Jan Rossmeisl, James R. Durrant, Ifan E. L. Stephens
{"title":"Unravelling the effects of active site density and energetics on the water oxidation activity of iridium oxides","authors":"Caiwu Liang, Reshma R. Rao, Katrine L. Svane, Joseph H. L. Hadden, Benjamin Moss, Soren B. Scott, Michael Sachs, James Murawski, Adrian Malthe Frandsen, D. Jason Riley, Mary P. Ryan, Jan Rossmeisl, James R. Durrant, Ifan E. L. Stephens","doi":"10.1038/s41929-024-01168-7","DOIUrl":null,"url":null,"abstract":"Understanding what controls the reaction rate on iridium-based catalysts is central to designing better electrocatalysts for the water oxidation reaction in proton exchange membrane electrolysers. Here we quantify the densities of redox-active centres and probe their binding strengths on amorphous IrOx and rutile IrO2 using operando time-resolved optical spectroscopy. We establish a quantitative experimental correlation between the intrinsic reaction rate and the active-state energetics. We find that adsorbed oxygen species, *O, formed at water oxidation potentials, exhibit repulsive adsorbate–adsorbate interactions. Increasing their coverage weakens their binding, thereby promoting O–O bond formation, which is the rate-determining step. These analyses suggest that although amorphous IrOx exhibits a higher geometric current density, the intrinsic reaction rates per active state on IrOx and IrO2 are comparable at given potentials. Finally, we present a modified volcano plot that elucidates how the intrinsic water oxidation kinetics can be increased by optimizing both the binding energy and the interaction strength between the catalytically active states. Iridium oxide is the state-of-the-art catalyst for water oxidation in an acidic electrolyte. Now amorphous and crystalline iridium oxides are studied using operando time-resolved optical spectroscopy, together with other techniques, to reveal the nature and density of active centres and the role of adsorbate–adsorbate interactions.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 7","pages":"763-775"},"PeriodicalIF":42.8000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41929-024-01168-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01168-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding what controls the reaction rate on iridium-based catalysts is central to designing better electrocatalysts for the water oxidation reaction in proton exchange membrane electrolysers. Here we quantify the densities of redox-active centres and probe their binding strengths on amorphous IrOx and rutile IrO2 using operando time-resolved optical spectroscopy. We establish a quantitative experimental correlation between the intrinsic reaction rate and the active-state energetics. We find that adsorbed oxygen species, *O, formed at water oxidation potentials, exhibit repulsive adsorbate–adsorbate interactions. Increasing their coverage weakens their binding, thereby promoting O–O bond formation, which is the rate-determining step. These analyses suggest that although amorphous IrOx exhibits a higher geometric current density, the intrinsic reaction rates per active state on IrOx and IrO2 are comparable at given potentials. Finally, we present a modified volcano plot that elucidates how the intrinsic water oxidation kinetics can be increased by optimizing both the binding energy and the interaction strength between the catalytically active states. Iridium oxide is the state-of-the-art catalyst for water oxidation in an acidic electrolyte. Now amorphous and crystalline iridium oxides are studied using operando time-resolved optical spectroscopy, together with other techniques, to reveal the nature and density of active centres and the role of adsorbate–adsorbate interactions.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.