Meng Liu, Anna T. Trugman, Josep Peñuelas, William R. L. Anderegg
{"title":"Climate-driven disturbances amplify forest drought sensitivity","authors":"Meng Liu, Anna T. Trugman, Josep Peñuelas, William R. L. Anderegg","doi":"10.1038/s41558-024-02022-1","DOIUrl":null,"url":null,"abstract":"Forests are a major terrestrial carbon sink, but the increasing frequency and intensity of climate-driven disturbances such as droughts, fires and biotic agent outbreaks is threatening carbon uptake and sequestration. Determining how climate-driven disturbances may alter the capacity of forest carbon sinks in a changing climate is crucial. Here we show that the sensitivity of gross primary productivity to subsequent water stress increased significantly after initial drought and fire disturbances in the conterminous United States. Insect outbreak events, however, did not have significant impacts. Hot and dry environments generally exhibited increased sensitivity. Estimated ecosystem productivity and terrestrial carbon uptake decreased markedly with future warming scenarios due to the increased sensitivity to water stress. Our results highlight that intensifying disturbance regimes are likely to further impact forest sustainability and carbon sequestration, increasing potential risks to future terrestrial carbon sinks and climate change mitigation. The authors quantify how climate change-related disturbances—drought, fires and insect outbreaks—impact the sensitivity of primary productivity to subsequent water stress. They show significant increases in sensitivity following drought and fire, leading to decreased terrestrial carbon uptake.","PeriodicalId":18974,"journal":{"name":"Nature Climate Change","volume":null,"pages":null},"PeriodicalIF":29.6000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Climate Change","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41558-024-02022-1","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Forests are a major terrestrial carbon sink, but the increasing frequency and intensity of climate-driven disturbances such as droughts, fires and biotic agent outbreaks is threatening carbon uptake and sequestration. Determining how climate-driven disturbances may alter the capacity of forest carbon sinks in a changing climate is crucial. Here we show that the sensitivity of gross primary productivity to subsequent water stress increased significantly after initial drought and fire disturbances in the conterminous United States. Insect outbreak events, however, did not have significant impacts. Hot and dry environments generally exhibited increased sensitivity. Estimated ecosystem productivity and terrestrial carbon uptake decreased markedly with future warming scenarios due to the increased sensitivity to water stress. Our results highlight that intensifying disturbance regimes are likely to further impact forest sustainability and carbon sequestration, increasing potential risks to future terrestrial carbon sinks and climate change mitigation. The authors quantify how climate change-related disturbances—drought, fires and insect outbreaks—impact the sensitivity of primary productivity to subsequent water stress. They show significant increases in sensitivity following drought and fire, leading to decreased terrestrial carbon uptake.
期刊介绍:
Nature Climate Change is dedicated to addressing the scientific challenge of understanding Earth's changing climate and its societal implications. As a monthly journal, it publishes significant and cutting-edge research on the nature, causes, and impacts of global climate change, as well as its implications for the economy, policy, and the world at large.
The journal publishes original research spanning the natural and social sciences, synthesizing interdisciplinary research to provide a comprehensive understanding of climate change. It upholds the high standards set by all Nature-branded journals, ensuring top-tier original research through a fair and rigorous review process, broad readership access, high standards of copy editing and production, rapid publication, and independence from academic societies and other vested interests.
Nature Climate Change serves as a platform for discussion among experts, publishing opinion, analysis, and review articles. It also features Research Highlights to highlight important developments in the field and original reporting from renowned science journalists in the form of feature articles.
Topics covered in the journal include adaptation, atmospheric science, ecology, economics, energy, impacts and vulnerability, mitigation, oceanography, policy, sociology, and sustainability, among others.