Unraveling the Atmospheric Energy Input and Ionization Due To EMIC-Driven Electron Precipitation From ELFIN Observations

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2024-06-07 DOI:10.1029/2023AV001096
L. Capannolo, R. Marshall, W. Li, G. Berland, K. Duderstadt, N. Sivadas, D. L. Turner, V. Angelopoulos
{"title":"Unraveling the Atmospheric Energy Input and Ionization Due To EMIC-Driven Electron Precipitation From ELFIN Observations","authors":"L. Capannolo,&nbsp;R. Marshall,&nbsp;W. Li,&nbsp;G. Berland,&nbsp;K. Duderstadt,&nbsp;N. Sivadas,&nbsp;D. L. Turner,&nbsp;V. Angelopoulos","doi":"10.1029/2023AV001096","DOIUrl":null,"url":null,"abstract":"<p>Energetic electron precipitation (EEP) from the radiation belts into Earth's atmosphere leads to several profound effects (e.g., enhancement of ionospheric conductivity, possible acceleration of ozone destruction processes). An accurate quantification of the energy input and ionization due to EEP is still lacking due to instrument limitations of low-Earth-orbit satellites capable of detecting EEP. The deployment of the Electron Losses and Fields InvestigatioN (ELFIN) CubeSats marks a new era of observations of EEP with an improved pitch-angle (0°–180°) and energy (50 keV–6 MeV) resolution. Here, we focus on the EEP recorded by ELFIN coincident with electromagnetic ion cyclotron (EMIC) waves, which play a major role in radiation belt electron losses. The EMIC-driven EEP (∼200 keV–∼2 MeV) exhibits a pitch-angle distribution (PAD) that flattens with increasing energy, indicating more efficient high-energy precipitation. Leveraging the combination of unique electron measurements from ELFIN and a comprehensive ionization model known as Boulder Electron Radiation to Ionization (BERI), we quantify the energy input of EMIC-driven precipitation (on average, ∼3.3 × 10<sup>−2</sup> erg/cm<sup>2</sup>/s), identify its location (any longitude, 50°–70° latitude), and provide the expected range of ion-electron production rate (on average, 100–200 pairs/cm<sup>3</sup>/s), peaking in the mesosphere—a region often overlooked. Our findings are crucial for improving our understanding of the magnetosphere-ionosphere-atmosphere system as they accurately specify the contribution of EMIC-driven EEP, which serves as a crucial input to state-of-the-art atmospheric models (e.g., WACCM) to quantify the accurate impact of EMIC waves on both the atmospheric chemistry and dynamics.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 3","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023AV001096","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023AV001096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Energetic electron precipitation (EEP) from the radiation belts into Earth's atmosphere leads to several profound effects (e.g., enhancement of ionospheric conductivity, possible acceleration of ozone destruction processes). An accurate quantification of the energy input and ionization due to EEP is still lacking due to instrument limitations of low-Earth-orbit satellites capable of detecting EEP. The deployment of the Electron Losses and Fields InvestigatioN (ELFIN) CubeSats marks a new era of observations of EEP with an improved pitch-angle (0°–180°) and energy (50 keV–6 MeV) resolution. Here, we focus on the EEP recorded by ELFIN coincident with electromagnetic ion cyclotron (EMIC) waves, which play a major role in radiation belt electron losses. The EMIC-driven EEP (∼200 keV–∼2 MeV) exhibits a pitch-angle distribution (PAD) that flattens with increasing energy, indicating more efficient high-energy precipitation. Leveraging the combination of unique electron measurements from ELFIN and a comprehensive ionization model known as Boulder Electron Radiation to Ionization (BERI), we quantify the energy input of EMIC-driven precipitation (on average, ∼3.3 × 10−2 erg/cm2/s), identify its location (any longitude, 50°–70° latitude), and provide the expected range of ion-electron production rate (on average, 100–200 pairs/cm3/s), peaking in the mesosphere—a region often overlooked. Our findings are crucial for improving our understanding of the magnetosphere-ionosphere-atmosphere system as they accurately specify the contribution of EMIC-driven EEP, which serves as a crucial input to state-of-the-art atmospheric models (e.g., WACCM) to quantify the accurate impact of EMIC waves on both the atmospheric chemistry and dynamics.

Abstract Image

从 ELFIN 观测中揭示 EMIC 驱动的电子沉降引起的大气能量输入和电离作用
从辐射带进入地球大气层的高能电子沉淀(EEP)会产生若干深远影响(例如,电离层电导率增强,臭氧破坏过程可能加速)。由于能够探测 EEP 的低地轨道卫星的仪器有限,目前仍缺乏对 EEP 所造成的能量输入和电离的准确量化。电子损耗和场调查(ELFIN)立方体卫星的部署标志着一个新时代的到来,它将以更高的俯仰角(0°-180°)和能量(50 keV-6 MeV)分辨率观测 EEP。在此,我们重点关注 ELFIN 记录的与电磁离子回旋波(EMIC)同时出现的 EEP,电磁离子回旋波在辐射带电子损耗中发挥着重要作用。电磁离子回旋加速器波(EMIC)驱动的EEP(∼200 keV-∼2 MeV)呈现出俯仰角分布(PAD),随着能量的增加而变平,表明高能析出更加有效。利用 ELFIN 独特的电子测量数据和称为 "Boulder Electron Radiation to Ionization (BERI) "的综合电离模型,我们量化了 EMIC 驱动的降水的能量输入(平均 ∼3.3 × 10-2 erg/cm2/s),确定了其位置(任何经度,50°-70°纬度),并提供了离子-电子产生率的预期范围(平均 100-200 对/cm3/s),在中间层--一个经常被忽视的区域--达到峰值。我们的研究结果对提高我们对磁层-电离层-大气层系统的认识至关重要,因为它们准确地说明了电磁波驱动的电子-电离产生率的贡献,这是对最先进的大气模型(如 WACCM)的重要输入,以量化电磁波对大气化学和动力学的准确影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信