Characterizing slopes for 5 2 $5_2$

IF 1 2区 数学 Q1 MATHEMATICS
John A. Baldwin, Steven Sivek
{"title":"Characterizing slopes for \n \n \n 5\n 2\n \n $5_2$","authors":"John A. Baldwin,&nbsp;Steven Sivek","doi":"10.1112/jlms.12951","DOIUrl":null,"url":null,"abstract":"<p>We prove that all rational slopes are characterizing for the knot <span></span><math>\n <semantics>\n <msub>\n <mn>5</mn>\n <mn>2</mn>\n </msub>\n <annotation>$5_2$</annotation>\n </semantics></math>, except possibly for positive integers. Along the way, we classify the Dehn surgeries on knots in <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>3</mn>\n </msup>\n <annotation>$S^3$</annotation>\n </semantics></math> that produce the Brieskorn sphere <span></span><math>\n <semantics>\n <mrow>\n <mi>Σ</mi>\n <mo>(</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>11</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$\\Sigma (2,3,11)$</annotation>\n </semantics></math>, and we study knots on which large integral surgeries are almost L-spaces.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12951","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that all rational slopes are characterizing for the knot 5 2 $5_2$ , except possibly for positive integers. Along the way, we classify the Dehn surgeries on knots in S 3 $S^3$ that produce the Brieskorn sphere Σ ( 2 , 3 , 11 ) $\Sigma (2,3,11)$ , and we study knots on which large integral surgeries are almost L-spaces.

确定 5 2 5_2$ 的斜率特征
我们证明,除了可能是正整数外,所有有理斜率都是结 5 2 5_2$ 的特征。同时,我们对 S 3 $S^3$ 中产生布里斯科恩球 Σ ( 2 , 3 , 11 ) $\Sigma (2,3,11)$ 的结上的德恩手术进行了分类,并研究了大积分手术几乎是 L 空间的结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信