Scattered trinomials of Fq6[X] in even characteristic

IF 1.2 3区 数学 Q1 MATHEMATICS
Daniele Bartoli , Giovanni Longobardi , Giuseppe Marino , Marco Timpanella
{"title":"Scattered trinomials of Fq6[X] in even characteristic","authors":"Daniele Bartoli ,&nbsp;Giovanni Longobardi ,&nbsp;Giuseppe Marino ,&nbsp;Marco Timpanella","doi":"10.1016/j.ffa.2024.102449","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, several families of scattered polynomials have been investigated in the literature. However, most of them only exist in odd characteristic. In <span>[9]</span>, <span>[24]</span>, the authors proved that the trinomial <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>+</mo><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>X</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></msup></math></span> of <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msup></mrow></msub><mo>[</mo><mi>X</mi><mo>]</mo></math></span> is scattered under the assumptions that <em>q</em> is odd and <span><math><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>c</mi><mo>=</mo><mn>1</mn></math></span>. They also explicitly observed that this is false when <em>q</em> is even. In this paper, we provide a different set of conditions on <em>c</em> for which this trinomial is scattered in the case of even <em>q</em>. Using tools of algebraic geometry in positive characteristic, we show that when <em>q</em> is even and sufficiently large, there are roughly <span><math><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> elements <span><math><mi>c</mi><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msup></mrow></msub></math></span> such that <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is scattered. Also, we prove that the corresponding MRD-codes and <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>-linear sets of <span><math><mrow><mi>PG</mi></mrow><mo>(</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>6</mn></mrow></msup><mo>)</mo></math></span> are not equivalent to the previously known ones.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"97 ","pages":"Article 102449"},"PeriodicalIF":1.2000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1071579724000881/pdfft?md5=8a841f52ac38f09246cba1d4c920247c&pid=1-s2.0-S1071579724000881-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000881","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, several families of scattered polynomials have been investigated in the literature. However, most of them only exist in odd characteristic. In [9], [24], the authors proved that the trinomial fc(X)=Xq+Xq3+cXq5 of Fq6[X] is scattered under the assumptions that q is odd and c2+c=1. They also explicitly observed that this is false when q is even. In this paper, we provide a different set of conditions on c for which this trinomial is scattered in the case of even q. Using tools of algebraic geometry in positive characteristic, we show that when q is even and sufficiently large, there are roughly q3 elements cFq6 such that fc(X) is scattered. Also, we prove that the corresponding MRD-codes and Fq-linear sets of PG(1,q6) are not equivalent to the previously known ones.

偶数特征中 Fq6[X] 的散点三项式
近年来,文献中研究了多个散点多项式族。然而,它们大多只存在于奇数特征中。在 [9], [24] 中,作者证明了 Fq6[X] 的三项式 fc(X)=Xq+Xq3+cXq5 在 q 为奇数且 c2+c=1 的假设条件下是分散的。他们还明确地指出,当 q 为偶数时,这种情况是错误的。本文利用正特征代数几何工具,证明当 q 为偶数且足够大时,大致有 q3 个元素 c∈Fq6 使得 fc(X) 是分散的。此外,我们还证明了 PG(1,q6) 的相应 MRD 代码和 Fq 线性集合与之前已知的并不等价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信