On the transverse stability of smooth solitary waves in a two-dimensional Camassa–Holm equation

IF 2.1 1区 数学 Q1 MATHEMATICS
Anna Geyer , Yue Liu , Dmitry E. Pelinovsky
{"title":"On the transverse stability of smooth solitary waves in a two-dimensional Camassa–Holm equation","authors":"Anna Geyer ,&nbsp;Yue Liu ,&nbsp;Dmitry E. Pelinovsky","doi":"10.1016/j.matpur.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the propagation of smooth solitary waves in a two-dimensional generalization of the Camassa–Holm equation. We show that transverse perturbations to one-dimensional solitary waves behave similarly to the KP-II theory. This conclusion follows from our two main results: (i) the double eigenvalue of the linearized equations related to the translational symmetry breaks under a transverse perturbation into a pair of the asymptotically stable resonances and (ii) small-amplitude solitary waves are linearly stable with respect to transverse perturbations.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":"188 ","pages":"Pages 1-25"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Mathematiques Pures et Appliquees","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000552","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the propagation of smooth solitary waves in a two-dimensional generalization of the Camassa–Holm equation. We show that transverse perturbations to one-dimensional solitary waves behave similarly to the KP-II theory. This conclusion follows from our two main results: (i) the double eigenvalue of the linearized equations related to the translational symmetry breaks under a transverse perturbation into a pair of the asymptotically stable resonances and (ii) small-amplitude solitary waves are linearly stable with respect to transverse perturbations.

论二维卡马萨-霍尔姆方程中平滑孤波的横向稳定性
我们考虑了光滑孤波在卡马萨-霍姆方程二维广义中的传播。我们证明,一维孤波的横向扰动与 KP-II 理论的表现类似。这一结论源于我们的两个主要结果:(i) 在横向扰动下,与平移对称性相关的线性化方程的双特征值断裂成一对渐近稳定的共振;(ii) 小振幅孤波相对于横向扰动是线性稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
84
审稿时长
6 months
期刊介绍: Published from 1836 by the leading French mathematicians, the Journal des Mathématiques Pures et Appliquées is the second oldest international mathematical journal in the world. It was founded by Joseph Liouville and published continuously by leading French Mathematicians - among the latest: Jean Leray, Jacques-Louis Lions, Paul Malliavin and presently Pierre-Louis Lions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信