{"title":"On the transverse stability of smooth solitary waves in a two-dimensional Camassa–Holm equation","authors":"Anna Geyer , Yue Liu , Dmitry E. Pelinovsky","doi":"10.1016/j.matpur.2024.05.008","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the propagation of smooth solitary waves in a two-dimensional generalization of the Camassa–Holm equation. We show that transverse perturbations to one-dimensional solitary waves behave similarly to the KP-II theory. This conclusion follows from our two main results: (i) the double eigenvalue of the linearized equations related to the translational symmetry breaks under a transverse perturbation into a pair of the asymptotically stable resonances and (ii) small-amplitude solitary waves are linearly stable with respect to transverse perturbations.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782424000552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the propagation of smooth solitary waves in a two-dimensional generalization of the Camassa–Holm equation. We show that transverse perturbations to one-dimensional solitary waves behave similarly to the KP-II theory. This conclusion follows from our two main results: (i) the double eigenvalue of the linearized equations related to the translational symmetry breaks under a transverse perturbation into a pair of the asymptotically stable resonances and (ii) small-amplitude solitary waves are linearly stable with respect to transverse perturbations.