Maximiliano E. Véliz , Gustavo E. Real , Alejandro D. Otero
{"title":"Flexible and configurable embedded electrical energy measurement system to acquire and process high-frequency features","authors":"Maximiliano E. Véliz , Gustavo E. Real , Alejandro D. Otero","doi":"10.1016/j.ohx.2024.e00539","DOIUrl":null,"url":null,"abstract":"<div><p>A novel High-Frequency Electric Energy Metering System to inspect non-conventional features that may be relevant for studying real-time energy disaggregation and control of household appliances is presented. Integration of a data acquisition and control board, designed and built to be assembled with an Arduino Due, with the M90E36A Demo Board, allows for flexible and configurable electrical energy measurements. A key feature is that up to 4 current channels can be measured synchronously. On the one hand, samples can be obtained and processed by the M90E36A IC internal Digital Signal Processor at 3 Hz in the time domain and 2 Hz in the frequency domain. On the other hand, the M90E36A IC direct access memory mode can be operated, allowing 8 kHz pure voltage and current signals to be obtained. Finally, integration with Raspberry Pi allows to design and incorporate a custom signal processor into the study. Additionally, in this article, an application example is presented where the variation of the residual harmonic components of a household appliance is obtained.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000336/pdfft?md5=5383ad6a8021ef063f65406138ebdde9&pid=1-s2.0-S2468067224000336-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel High-Frequency Electric Energy Metering System to inspect non-conventional features that may be relevant for studying real-time energy disaggregation and control of household appliances is presented. Integration of a data acquisition and control board, designed and built to be assembled with an Arduino Due, with the M90E36A Demo Board, allows for flexible and configurable electrical energy measurements. A key feature is that up to 4 current channels can be measured synchronously. On the one hand, samples can be obtained and processed by the M90E36A IC internal Digital Signal Processor at 3 Hz in the time domain and 2 Hz in the frequency domain. On the other hand, the M90E36A IC direct access memory mode can be operated, allowing 8 kHz pure voltage and current signals to be obtained. Finally, integration with Raspberry Pi allows to design and incorporate a custom signal processor into the study. Additionally, in this article, an application example is presented where the variation of the residual harmonic components of a household appliance is obtained.