{"title":"Causal inference in the absence of positivity: The role of overlap weights","authors":"Roland A. Matsouaka, Yunji Zhou","doi":"10.1002/bimj.202300156","DOIUrl":null,"url":null,"abstract":"<p>How to analyze data when there is violation of the positivity assumption? Several possible solutions exist in the literature. In this paper, we consider propensity score (PS) methods that are commonly used in observational studies to assess causal treatment effects in the context where the positivity assumption is violated. We focus on and examine four specific alternative solutions to the inverse probability weighting (IPW) trimming and truncation: matching weight (MW), Shannon's entropy weight (EW), overlap weight (OW), and beta weight (BW) estimators.</p><p>We first specify their target population, the population of patients for whom clinical equipoise, that is, where we have sufficient PS overlap. Then, we establish the nexus among the different corresponding weights (and estimators); this allows us to highlight the shared properties and theoretical implications of these estimators. Finally, we introduce their augmented estimators that take advantage of estimating both the propensity score and outcome regression models to enhance the treatment effect estimators in terms of bias and efficiency. We also elucidate the role of the OW estimator as the flagship of all these methods that target the overlap population.</p><p>Our analytic results demonstrate that OW, MW, and EW are preferable to IPW and some cases of BW when there is a moderate or extreme (stochastic or structural) violation of the positivity assumption. We then evaluate, compare, and confirm the finite-sample performance of the aforementioned estimators via Monte Carlo simulations. Finally, we illustrate these methods using two real-world data examples marked by violations of the positivity assumption.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300156","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
How to analyze data when there is violation of the positivity assumption? Several possible solutions exist in the literature. In this paper, we consider propensity score (PS) methods that are commonly used in observational studies to assess causal treatment effects in the context where the positivity assumption is violated. We focus on and examine four specific alternative solutions to the inverse probability weighting (IPW) trimming and truncation: matching weight (MW), Shannon's entropy weight (EW), overlap weight (OW), and beta weight (BW) estimators.
We first specify their target population, the population of patients for whom clinical equipoise, that is, where we have sufficient PS overlap. Then, we establish the nexus among the different corresponding weights (and estimators); this allows us to highlight the shared properties and theoretical implications of these estimators. Finally, we introduce their augmented estimators that take advantage of estimating both the propensity score and outcome regression models to enhance the treatment effect estimators in terms of bias and efficiency. We also elucidate the role of the OW estimator as the flagship of all these methods that target the overlap population.
Our analytic results demonstrate that OW, MW, and EW are preferable to IPW and some cases of BW when there is a moderate or extreme (stochastic or structural) violation of the positivity assumption. We then evaluate, compare, and confirm the finite-sample performance of the aforementioned estimators via Monte Carlo simulations. Finally, we illustrate these methods using two real-world data examples marked by violations of the positivity assumption.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.