Pseudomonas otitidis-mediated synthesis of silver nanoparticles: characterization, antimicrobial and antibiofilm potential.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ashitha Jose, Sneha Asha, Anaswara Rani, Xavier T S, Praveen Kumar
{"title":"Pseudomonas otitidis-mediated synthesis of silver nanoparticles: characterization, antimicrobial and antibiofilm potential.","authors":"Ashitha Jose, Sneha Asha, Anaswara Rani, Xavier T S, Praveen Kumar","doi":"10.1093/lambio/ovae053","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using soil bacteria, Pseudomonas otitidis. The bio-synthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). UV-visible spectroscopy revealed a distinct broad absorption band in the range of 443 nm, indicating the reduction of silver nitrate to AgNPs. XRD analysis provided evidence of the crystalline nature of the particles, with sharp peaks confirming their crystallinity and an average size of 82.76 nm. FTIR spectroscopy identified extracellular protein compounds as capping agents. SEM examination revealed spherical agglomeration of the crystalline AgNPs. The antimicrobial assay by a disc diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration testing revealed that the biosynthesized AgNPs showed moderate antibacterial activity against both pathogenic Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) and Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus mutans) bacterial strains. Furthermore, the AgNPs significantly disrupted the biofilm of P. aeruginosa, as confirmed by crystal violet assay and fluorescent microscopy. Overall, this study underscores the potential of microbial-synthesized nanoparticles in biomedical applications, particularly in combating pathogenic bacteria, offering a promising avenue for future research and development.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the eco-friendly synthesis of silver nanoparticles (AgNPs) using soil bacteria, Pseudomonas otitidis. The bio-synthesized AgNPs were characterized using various techniques, including UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). UV-visible spectroscopy revealed a distinct broad absorption band in the range of 443 nm, indicating the reduction of silver nitrate to AgNPs. XRD analysis provided evidence of the crystalline nature of the particles, with sharp peaks confirming their crystallinity and an average size of 82.76 nm. FTIR spectroscopy identified extracellular protein compounds as capping agents. SEM examination revealed spherical agglomeration of the crystalline AgNPs. The antimicrobial assay by a disc diffusion method, minimum inhibitory concentration, and minimum bactericidal concentration testing revealed that the biosynthesized AgNPs showed moderate antibacterial activity against both pathogenic Gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii) and Gram-positive (Bacillus cereus, Staphylococcus aureus, and Streptococcus mutans) bacterial strains. Furthermore, the AgNPs significantly disrupted the biofilm of P. aeruginosa, as confirmed by crystal violet assay and fluorescent microscopy. Overall, this study underscores the potential of microbial-synthesized nanoparticles in biomedical applications, particularly in combating pathogenic bacteria, offering a promising avenue for future research and development.

假单胞菌介导的银纳米粒子合成:特性、抗菌和抗生物膜潜力
本研究探讨了利用土壤细菌假单胞菌(Pseudomonas otitidis)合成银纳米粒子(AgNPs)的生态友好性。研究采用多种技术对生物合成的 AgNPs 进行了表征,包括紫外可见光谱、傅立叶变换红外光谱、扫描电子显微镜和 X 射线衍射。紫外可见光谱在 443 纳米范围内显示出明显的宽吸收带,表明硝酸银还原成了 AgNPs。XRD 分析证明了颗粒的结晶性质,尖锐的峰值证实了其结晶性,平均粒径为 82.76 nm。傅立叶变换红外光谱鉴定出细胞外蛋白质化合物是封端剂。扫描电镜检查显示结晶 AgNPs 呈球形聚集。通过碟片扩散法、MIC 和 MBC 测试进行的抗菌试验表明,生物合成的 AgNPs 对致病性革兰氏阴性菌(肺炎克雷伯氏菌、铜绿假单胞菌和鲍曼不动杆菌)和革兰氏阳性菌(蜡样芽孢杆菌、金黄色葡萄球菌和变异链球菌)均表现出中等程度的抗菌活性。此外,AgNPs 还能显著破坏铜绿假单胞菌的生物膜,这一点已通过 CV 检测和荧光显微镜得到证实。总之,这项研究强调了微生物合成的纳米粒子在生物医学应用中的潜力,特别是在抗击致病菌方面,为未来的研究和开发提供了一个前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信