{"title":"A Comprehensive Review on Deep Learning Techniques in Alzheimer's Disease Diagnosis.","authors":"Anjali Mahavar, Atul Patel, Ashish Patel","doi":"10.2174/0115680266310776240524061252","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's Disease (AD) is a serious neurological illness that causes memory loss gradually by destroying brain cells. This deadly brain illness primarily strikes the elderly, impairing their cognitive and bodily abilities until brain shrinkage occurs. Modern techniques are required for an accurate diagnosis of AD. Machine learning has gained attraction in the medical field as a means of determining a person's risk of developing AD in its early stages. One of the most advanced soft computing neural network-based Deep Learning (DL) methodologies has garnered significant interest among researchers in automating early-stage AD diagnosis. Hence, a comprehensive review is necessary to gain insights into DL techniques for the advancement of more effective methods for diagnosing AD. This review explores multiple biomarkers associated with Alzheimer's Disease (AD) and various DL methodologies, including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), The k-nearest-neighbor (k-NN), Deep Boltzmann Machines (DBM), and Deep Belief Networks (DBN), which have been employed for automating the early diagnosis of AD. Moreover, the unique contributions of this review include the classification of ATN biomarkers for Alzheimer's Disease (AD), systemic description of diverse DL algorithms for early AD assessment, along with a discussion of widely utilized online datasets such as ADNI, OASIS, etc. Additionally, this review provides perspectives on future trends derived from critical evaluation of each variant of DL techniques across different modalities, dataset sources, AUC values, and accuracies.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680266310776240524061252","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Alzheimer's Disease (AD) is a serious neurological illness that causes memory loss gradually by destroying brain cells. This deadly brain illness primarily strikes the elderly, impairing their cognitive and bodily abilities until brain shrinkage occurs. Modern techniques are required for an accurate diagnosis of AD. Machine learning has gained attraction in the medical field as a means of determining a person's risk of developing AD in its early stages. One of the most advanced soft computing neural network-based Deep Learning (DL) methodologies has garnered significant interest among researchers in automating early-stage AD diagnosis. Hence, a comprehensive review is necessary to gain insights into DL techniques for the advancement of more effective methods for diagnosing AD. This review explores multiple biomarkers associated with Alzheimer's Disease (AD) and various DL methodologies, including Deep Neural Networks (DNN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), The k-nearest-neighbor (k-NN), Deep Boltzmann Machines (DBM), and Deep Belief Networks (DBN), which have been employed for automating the early diagnosis of AD. Moreover, the unique contributions of this review include the classification of ATN biomarkers for Alzheimer's Disease (AD), systemic description of diverse DL algorithms for early AD assessment, along with a discussion of widely utilized online datasets such as ADNI, OASIS, etc. Additionally, this review provides perspectives on future trends derived from critical evaluation of each variant of DL techniques across different modalities, dataset sources, AUC values, and accuracies.
期刊介绍:
Current Topics in Medicinal Chemistry is a forum for the review of areas of keen and topical interest to medicinal chemists and others in the allied disciplines. Each issue is solely devoted to a specific topic, containing six to nine reviews, which provide the reader a comprehensive survey of that area. A Guest Editor who is an expert in the topic under review, will assemble each issue. The scope of Current Topics in Medicinal Chemistry will cover all areas of medicinal chemistry, including current developments in rational drug design, synthetic chemistry, bioorganic chemistry, high-throughput screening, combinatorial chemistry, compound diversity measurements, drug absorption, drug distribution, metabolism, new and emerging drug targets, natural products, pharmacogenomics, and structure-activity relationships. Medicinal chemistry is a rapidly maturing discipline. The study of how structure and function are related is absolutely essential to understanding the molecular basis of life. Current Topics in Medicinal Chemistry aims to contribute to the growth of scientific knowledge and insight, and facilitate the discovery and development of new therapeutic agents to treat debilitating human disorders. The journal is essential for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important advances.